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FOREWORD 

This report  summarizes  work  performed 
for  the NASA Electronics  Research  Center' and the 
NASA Marshall Space Flight  Center  under  Contracts 
NAS12-508 and NASl2-678, over a period of about 
four  years.  Previously  most of this work was docu- 
mented in four  separate  reports (Refs. 1 ,2 ,3  and 14). 
The  present  document  brings  together the major  points 
of the research and attempts  to  organize  them in a log- 
ical  framework. Of necessity many minor  subjects 
covered in the above-referenced  documents have  been 
omitted  here.  Also, on rare occasions,  reference is 
made to  those earlier reports  for  specific details. 
However,  every  reasonable  effort has been  made Eo 
make this document  self-contained. 

Since the work  covered in this report spanned 
several years ,  the list of contributors is long and was 
omitted  from the cover  page.  The  research  reported 
here was performed by the following persons at TASC: 
William S. Beebee , Joe C . Dunn, John €I. Fagan, 
Arthur Gelb, William D. Koenigsberg,  Charles F. 
Price, and Arthur A, Sutherland, Jr. ,  Dr. Herbert 
Weinstock and Messrs.  Lawrence  Sher and Edward 
Koenke of the Electronics  Research  Center and Messrs. 
Billy Doran and  Samuel O'Hanian at Marshall Space 
Flight  Center  provided  support and encouragement. 
This  summary volume was edited by A.A. Sutherland, Jr. 
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1. INTRODUCTION 

1 1 BACKGROUND 

Strapdown inertial  measurement units, in which the sensors are 
rigidly  attached to  the vehicle,  offer many potential  advantages  over their 
gimballed  counterparts.  These  include:  lower weight and power consump- 
tion,  more  flexible  packaging, easier assembly and maintenance, as well 
as lower  cost and improved  reliability. On the other hand, in the  strap- 
down system greater demands are made on the sensors and computer. 
This  report  treats a problem of major  importance  to  strapdown  systems -- 
e r ro r s  which result  from  interaction between the inertial sensors and 
their motion environment, 

As a result of body mounting,  vehicle rotational  motions a re  
transmitted  directly  to the gyros and accelerometers,  forcing  considera- 
tion of many error   terms which are of little relative  importance when sta- 
biliked platforms are used. The sensor  torque  rebalance  loops and the co- 
ordinate  transformation  calculation  required in strapdown systems  also 
provide  mechanisms  for  the  generation of important  system-level  errors. 
All of these  factors  must be considered in the course of developing high 

accuracy  strapdown  inertial  reference  systems. 

One question that arises is 'What  parameters are at the disposal 
of the designer, and how should they be chosen to  optimize the performance 
of the strapdown inertial navigation system?"  These  parameters include: 
damping  coefficient,  moments of inertia, gyro rotor  speed,  maximum re- 
balance  torque, loop sampling  frequency,  nonlinearity  dead-band,  etc. 
They are not  necessarily free for independent choice. In addition, the 
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possibility for active  compensation of sensor  errors bears heavily on 
the best choice of design  parameters and promises to provide  an  inde- 

pendent  approach  to e r ro r  reducticm. This  document  summarizes  studies 
related  to  predicting motion-induced strapdown  sensor e r ro r s  and reduc- 
ing their impact on system  performance. 

1.2  OUTLINE OF THE  STUDY 

The goal of the  research  summarized  here was to take a com- 
prehensive look at the  effect of motion-induced gyro and accelerometer 
e r ro r s  on the accuracy of strapdown inertial navigation systems.  Figure 

1.2-1 illustrates the progression of e r ro r s  through a strapdown  system, 
beginning as error  torques on the inertial  sensors and winding up as 
system-level drift rates and acceleration  errors.  The  characteristics of 
the motion-induced error  torques in single-degree-of-freedom  gyros and 

accelerometers  were  explored. Some of these  error  torques are influenced 
by sensor (e. g., gyro and rebalance  electronics  combined)  dynamics. It 
was noted that the dynamic  environment  can  generate  constant error   tor-  
ques at the sensor  level  (rectification at the  sensor  level), giving constant 
gyro and accelerometer  errors that translate  directly  into  serious drift 

rates and acceleration  errors at the  system  level. In addition certain 
oscillatory  sensor  errors  result.  The latter do not appear  to  be  serious 
when viewed at the outputs of the  individual sensors but can cause  large 

system-level  errors by rectifying in the system  calculations. 

In order  to relate system  performance  to  sensor  parameters 
and the motion environment, it is evident  from  Fig. 1 .2 -1  that descriptions 

of the sensor  transmission  characteristics  are needed.  However, strap- 
down instruments  usually contain nonlinear  pulse  torquing  loops and their 
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M O T I O N   E N V I R O N M E N T  

1 
I SENSOR TRANSMISSION  CHARACTER^ 

I 
RECTIFICATION 

I N  THE I N   T H E  SYSTEM 
SENSORS  CALCULATIONS 

f 
STRAPDOWN  SYSTEM  ERRORS 

Figure 1.2-1 Progression of Motion-Induced 
Strapdown System Er ro r s  

behavior is difficult  to  analyze  exactly.  Describing function theory was 
successfully  applied  to this problem; good agreement was noted between 
analytically  predicted  sensor loop behavior and that observed  during 
simulation. 

Armed with analytic  tools which relate  system  errors  to  the 
dynamic  environment and the sensor  parameters, the question of sensor 
design  to  optimize  system  performance was  treated. While it was found 
that manipulating the designable  parameters of the sensors can reduce 
motion-induced system  errors, the required  changes in physical  param- 
eters are by-and-large  impractical.  The  major  contributors  to e r ro r s  in 

the single-degree-of-freedom gyro, for  example, are related to  parameters 
which are vital to the operation of the instrument -- as distinguished  from 
imperfections in the gyro  construction.  Consequently,  physical  constraints 
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often preclude changing these parameters  to  improve  system  performance, 
except within very  narrow  limits. 

Since sensor  design,  per se, does  not  appear  to be a wholly satis- 
factory way of reducing  strapdown  system  errors, compensation  techniques 
were  investigated. In this case the fact that the error  torques  result  from an 
interaction between the environment and well-known instrument  param- 
eters is advantageous. Given a measurement of the  environment and 
knowledge of the important  parameters it is possible  to compute the e r ror  
torques and apply appropriate  corrections.  This  approach  to  system  error 
reduction was explored at some length. 

The  research  summarized in this  document addresses the prob- 

lem of predicting  strapdown  system  performance in a given environment 
and explores  techniques  for  reducing motion-induced system  errors  to an 
acceptable  level. 

1 . 3  ORGANIZATION OF THE RE  PORT 

This  report is divided into  four main parts. Part I develops 

e r ro r  models  for the single-degree-of-freedom gyro and the single-degree- 
of-freedom  pendulous  accelerometer  (Chapter 2), and demonstrates the 

manner in which sensor  errors are translated  into  strapdown  inertial  sys- 
tem  errors  (Chapter 3). At the  conclusion of Part I some  examples are 
given in which the  system-level motion-induced e r ro r s  are computed for 
different motion environments and instrument  parameters  (Chapter 4). 

Part II of the report is devoted to  torque  rebalance  techniques 
for  strapdown gyros and accelerometers.  The three most common pulse 

torquing  schemes are described in Chapter 5. In Chapters 6,7, and 8 
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describing function analyses are applied to  sensor loops which employ 
these techniques, In each  case the predicted loop behavior is compared 
with the results of a simulation. 

Ways to  reduce motion-induced e r ro r s  in  strapdown systems 
are treated in Part 111. Chapter 9 explores  error  reduction by selecting 
the sensor  parameters while  Chapter 10 discusses  active  compensation 
using  the known instrument  characteristics and the measured motion 
environment. Part N contains a summary of the research  effort and 
states conclusions that can be drawn  from it. 
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PART I: ERROR  GENERATION 



2. DYNAMIC ERRORS IN STRAPDOWN  SENSORS 

This  chapter  discusses  those  errors in single-degree-of  -freedom 

(SDF) strapdown gyros and SDF  pendulous accelerometers which are caused 
by angular  and  linear motion and, to  some  extent, by rebalance  mechanisms. 
The e r ro r s  treated are expressed in the form of error  torques, which con- 
structively  act  about the output axis of each  sensor in a manner  similar  to 
the basic  quantities that the instrument is intended to  measure. The ques- 
tion of whether the error  torques  always  result in e r ro r s  at the sensor out- 
put is treated in Part I1 of this  document. 

2 . 1  SINGLE-DEGREE  -OF-FREEDOM  GYRO 

A single-degree-of-freedom  gyro has a spinning  rotor mounted 
in a gimbal that allows only one degree of freedom  relative  to  the  case  (see 
Fig. 2.1-1) .  The  equation of motion of an "ideal" linear single-degree-of- 
freedom gyro can be determined by equating  reaction  torques about the out- 
put axis to  the  gyroscopic  precession  torque which results  from  case 
motion about the  input axis, viz: 

I 6 + Ccio + Kao = Hui 
00 0 

where 

cy = gimbal-to-case  angle  about the output axis 
0 

I = rotor  plus  gimbal  moment of inertia 
00 

C = viscous  damping  coefficient 

(2.1-1) 

K = spring  constant 

2-1 



R -1227 

( 5 )  

Spin 
Reference 

Gimbal Angle, a, 

. A -  Output A x i s  ( 0 )  

Figure 2.1-1 Single-Degree-of-Freedom  Gyro 

H = rotor  angular  momentum 

w. = angular  rate of the case  about the input axis 
1 

A s  indicated by Eq. (2.1-1), in the absence of motion about  other  axes a 
constant value of w. results in the following steady-state  value of Q - 

1 0' 

H 
a! = " w  o K i  

Hence, this gyro is referred  to as a " rate  gyro, as the gimbal angle is a 
direct  measure of case  rate. In the  situation where K = 0, we get a steady- 

state gimbal  angle rate, 

Thus,  gimbal  angle is related  directly  to the integral of the input rate, and 

this gyro is therefore  called a rate integrating  gyro. By mounting  the gyro 
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rotor in an enclosure which serves as the gimbal and floating the whole 
assembly  in a fluid of appropriate  density, the gyro output axis bearings 
are unloaded  and  thus  some  uncertainty  torques are minimized.  This con- 
figuration,  called  the  floated - rate integrating " gyro is extensively  used for 
very high accuracy  applications  such as inertial navigation. 

In gimballed  platform  applications, the gyro float  angle, ao, is 
continuously  nulled by platform  gimbal  servo  action, In strapdown  system 
applications, the gyro float  angle is nulled by the application of a torque 
generated by passing  an  electric  current  through the windings of an output 
axis torquer. The current, which may be continuous  (analog) or a series 
of pulses  (digital), is based on a measurement of the float  angle.  The 
closed loop comprised of float  dynamics,  float  angle  pick-off,  torquing 
electronics  and output axis torquer is called  the  rebalance loop. The re- 
balance  current is taken as a measure of input rate (for continuous torqued 
gyros) o r  incremental input  angle (for  pulse  torqued  gyros).  Figure 2.1-2 

shows a general  schematic  diagram of a straTlown gyro rebalance loop. 

R 3753 

Figure 2.1-2 Strapdown Gyro  Rebalance Loop 
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Gyro  drift rate results  from unwanted torques on the  float. For 
reference  purposes  the  various types of torques are displayed in Fig. 2.1-3. 
The nomenclature  used in this figure as well as in  subsequent  sections is 
presented below. In each  case  the  subscripts 0, i, s refer to output,  input 
and - spin axes, respectively. 

- 

f f f  = 
0' i' s 

a07 "i' Us - 

Go, &., L! = 

- 

1 s  

Q! ,cY.,o - 
- 

0 1 s  

Bo' Bi = 

I I.. I = 
00' 11' ss 

m =  

case  specific  force -- the difference 
between inertial  acceleration and 
gravitational  acceleration 

case  angular rates 

case  angular  accelerations 

gimbal-to-case  angular  misalignments 

rotor-to-gimbal  angular  misalignments 

float  moments of inertia (including 
gimbal  and  rotor  components) 

rotor  moments of inertia 

gimbal  products of inertia 

rotor  spin rate relative to the gimbal 

float  center of mass  displacements 

direct  compliances 

cross compliances 

signal  generator gain 

torque  generator gain 

Issr 'S 

float  mass 
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c 

Figure 2.1-3 Strapdown Single-Degree-of -Freedom 
Gyro Error Torques 

2.1.1 Angular Motion Error Torques 

The error  torques ( T ~ )  due  to  rotational motion are  derived in 
Appendix A, and are  presented below. It is assumed that the only angu- 

lar motion between the gyro parts shown in Fig. 2 , l - 1  occurs along the 
gimbal output axis. 
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-I ( Gi+ wows)  +ISi ( wi 2 2  - us)  + a. [ (Iii- 
oi 

g g 

w w +Hw +I  &. 
0 00 1 

w w.-I  & 
0 1  0 0 s  1 

(2.1-2) 

The first term in Eq. (2.1-2), -IooEo, is the inertia  reaction  correspond- 

ing  to  gimbal-to-case  angular  acceleration, In combination with float vis- 

cous  damping  torque,-C& it is responsible  for the basic  gyro  time con- 
stant,  and  appears in the "ideal" gyro model of Eq. (2.1-1). 

0 

Output Axis Angular Acceleration - This  error  results  from 
case motion about the output axis. It is given by 

output axis angular - - - I cj acceleration  torque 00 0 
(2.1-3) 

and is one of the  larger  error  contributors in strapdown  system  mechani- 

zations  (see  Chapter 4). Several  schemes  for  compensation of this  e r ror  
are discussed in Chapter 10. 

Cross-Coupling - Cross-coupling error  torques  are  caused by 
failure  to  null the float  angle, cyo. The  cross-coupling  terms in Eq. (2.1-2) 

a re  : 

cross-coupling = CY [(Iii- Iss>(",- 2 2  mi)- "us ]  
torques 0 

(2.1-4) 
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The first term is commonly called  anisoinertia. coupling. The  second term 
is often referred to as cross-coupling,  and  results  from a portion of the 

case rate about the spin  reference axis being  applied  along the actual  gim- 
bal input axis. 

It is easily  demonstrated that the cross-coupling  term can result 
in a rectified gyro float  torque.  Consider the following case input rates: 

dominant 
float  torques 2 H w i - I  & 

00 0 

it can be  seen that for a linear, continuous  rebalance loop the  steady-state 
float  angle  response  can  (approximately) be expressed as a combination of 
sinusoids,  each at frequency u.  Thus,  writing  the  float  angle as the  linear 
rebalance loop response  to  the dominant float  torques  yields 

where 

H 

d ( K  sg K tg K 1 -I  00 v2)2 +  CY)^ 
Lib) = 

Io0 
9 L2(v) = H L1(d 

-1 C V  v )  = - tan 2 
KsgKtgKl-*oov 
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and K represents the gain of linear  torquing  electronics in  Fig. 2.1-2. 
The  second term in Eq. (2. I-6), proportional  to U, is the float  response 
to output axis angular  acceleration. From Eqs.  (2.1-6)  and (2.1-4) it can 
be seen  that the cross-coupling  term  results  in a non-zero  average  value 
(i.e., rectified)  torque.  It is given by 

1 

average  cross- - 
coupling torque 2 

+ V  WoL2(v ) cos ( 0  y + X 2 ( U  ) -y S 1 
(2,1-7) 

The first term in this equation is called  spin-input  rectification,  and the 

second is called  spin-output  rectification. 

hisoinertia-Rotor Speed E r r o r  - Conventionally,  the  aniso- 
inertia  torque has been taken as the term (Iss- I.. ) w w. appearing in 

Eq. (2.1-2). But proper  consideration of anisoinertia  errors  requires 

simultaneous  treatment of rotor  speed  errors.  This is shown in the  fol- 

11 s 1 

lowing. 

The rotor is driven by a hysteresis  synchronous  motor. When 

rotating in synchronisin, the torque  applied  to  the  rotor is proportional  to 
the phase  difference between the  rotor and the rotating  field. This leads 

to  the  simplified  rotor  speed  error model  illustrated in Fig. 2.1-4, where 
o is the  input  and 6 0  is the output. In Laplace  transform  notation, we 

get  (friction  and windage torques, which are relatively  small,  are 
neglected): 

S 

2 
(2,1-8) 
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8n = CHANGE IN ROTOR SPEED RELATIVE TO THE GIMBAL 

K h = TORQUE  CONSTANT  (HYSTERESIS  SYNCHRONOUS  MOTOR 1 

Figure 2 1-4 Error  Model of Rotor  Speed  Control Loop 

Considering the "ideal" gyroscopic  torque  to be Hwi, or, equiva- 
lently, IsSrQsq, it can  be  seen that a rotor  speed e r ro r  leads  to  the follow- 
ing  error  torque: 

rotor  speed - 
error  torque 

- Iss 6 0  wi 
r 

Thus,  the  effective  anisoinertia error  torque  can be written as 

effective  anisoinertia = (I -I..) wswi +I 662wi 
error  torque ss 11 ss (2.1-9) 

r 

The importance of the  additional term can be seen by considering 
two limiting  cases. First, assume os to be slowly  varying so that 6a 2 0 

at all times.  From  Eq. (2.1-9) we get 

(2.1-10) 
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Eliminating this term  thus  becomes a matter of setting Iii and I equal. 
Since 

ss 

I.. = I.. + I.. 
11 ll 11 

g r 
I = I  ss  ss + 5 s  

g r 
(2.1-11) 

an  inertially  asymmetric  rotor  leads  to the requirement  for  an  inertially 

asymmetric  gimbal. 

Next, consider  the  situation where us is varying so  rapidly that 
the speed  control loop can not follow it at all. That is, 6hz 2 - wso From 

Eq, (2.1-9) we now get 

anisoinertia 
error  torque = (Iss - IiJ wswi - Iss wswi r 

= (Iss -Iii) wswi 
g 

(2.1-12) 

Eliminating this error  torque  places  different  requirements on gimbal  and 

rotor  inertias.  This  effect  can be argued  physically by observing that the 
gyro rotor is essentially uncoupled (about the spin axis) from the rest of 
the  instrument when the  case  experiences a high frequency  angular  oscilla- 
tion  about the spin axis, As a result of this uncoupling, the inertia of the 
rotor  about the spin axis does not contribute  to  float error  torques. 

Of course,  the changing effective  anisoinertia  term is a problem 

when attempts  are made to  reduce gyro error  torques.  For the input rates 
described in Eq. (2.1-5), it is readily shown that Eqs. (2.1-8) and (2.1-9) 

yield a rectified  torque  term given by: 

(2.1-13) 
The  frequency  sensitive  nature of this term is apparent. 
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, Gimbal  Products of Inertia - While they are usually  small 

relative  to  other  torques on an instantaneous  basis,  gimbal  product of 
inertia  terms  can  nevertheless be responsible  for  rectified  float  torques 
as well.  The  product of inertia  terms are, from Eq. (2. I-2), 

gimbal product Of - - I [ wowi - GS] +Isig [ - 4 inertia torques os 
g 

- Ioi [ Gi + .,us] 
g 

(2.1-14) 

When subjected  to the case  angular rates described by Eq. (2. I-5), the 
non-zero  average  value of the  gimbal  product of inertia  torques is 

average  gimbal 

inertia  torque 
product of = 1 [I WOWi C O S  yo 2 os 

g 

+ISi (W?-f)-I  01 . w 0 w s cos((yo-Ys) 
g g 1 

(2.1-15) 

Gimbal  and  Rotor  Misalignment - We have already  discussed 
the error  torques due to gimbal-to-case  misalignment about  the  output 
axis, 01 There are also  important  torques  caused by gimbal-to-case 
misalignments  about the spin  and  input  axes, as well  as rotor-to-gimbal 
misalignments  about the input  and output axes. Rotor-to-gimbal  misalign- 
ment  about the spin axis is of no  significance,  The  pertinent error  torques 
are, from  Eq. (2. I-2),  

0 
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gimbal-to-case 
misalignment = os [ ( i s  -I.. 11) w 0 w s +Ha + I  ~3. 

torques 0 00 1 1 
+ cyi [ (Iii- Iss) wowi - Ioods] 

and 

rotor-to-gimbal 

torques 
misalignment = Bo 

(2.1-16) 

+Pi [ (Igsr-IooJ(~s - u 0 u i ) + I s s 3 ]  (2.1-17) 

where the  misalignment  angles  are all treated as small and  constant.  The 
terms  in  these  equations are similar in origin  to  others  already  discussed. 
There  are  anisoinertia  terms,  cross-coupling  terms,  anisoinertia coupling 

terms,  case  angular-acceleration  terms due to  cross-coupling,  and  rotor 
speed  error  terms. In the presence of constant  angular rates or accelera- 
tions  for long durations,  these  terms may be significant. 

When subjected  to  the  case  angular rates described by Eq.  (2.1-5), 

the  non-zero  average  value of the  misalignment  terms is as follows: 

(2.1-18) 
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The gimbal and rotor  misalignment  errors  have,  in addition to 
a constant  portion  resulting  from  imperfect gyro construction,  time-varying 
characteristics which result  from  radial  and axial suspension  system  com- 
pliance.  These  additional  contributions are generated by gyroscopic  tor- 
ques due to output axis angular rates and inertia torques  caused by angular 
accelerations.  They  can  provide motion-induced error  torques  over  and 
above  those shown in  Eq. (2.1- 18) for  constant  misalignment. When de- 

signing  suspension  systems  for the rotor and  gimbals these e r ro r s  must 
be computed  and  sufficient  stiffness  provided  to keep them within accept- 
able limits. 

Rotational  Compliance - The gyro  model  employed  thus far per- 
mits only one rotational  degree of freedom about the  spin  axis,  assuming 
that the rotor is otherwise  rigidly  connected  to the float  structure,  Simi- 
larly,  one rotational  degree of freedom -- about the output axis -- is 
permitted and the float is otherwise  rigidly  connected to  the case. In a 
real gyroscope,  however,  angular  compliance is present between the  rotor 
and  the  float and between the  float and the case  about all axes. The addi- ! tional  degrees of freedom are responsible  for high frequency  resonant 
phenomena in the gyroscope. A discussion of suitable  spring-mass  models 
for  the compliance  effects  can be found in Ref. 4. For our  present  pur- 
poses it is sufficient  to  recognize  the  existence of these  terms, and to note 
that the resonant  frequencies involved bracket  the  structural  natural  fre- 
quency given by JK/Iiir, where K is the spring  constant between the rotor 
and  gimbal about the input  (output) axis, in dyne-cm/rad. This frequency 
is typically on the  order of 400 or more Hz. 

Rotor  Dynamic Unbalance - A disturbance  torque about  the gyro 
output axis can result if the rotor  does  not have perfect dynamic  balance. 
This  introduces an oscillatory  error at the rotor  spin  frequency  and is 
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independent of the environment. It has some  bearing on compensation 
schemes within the gyro loop; since the torque  enters  the loop as a dis- 
turbance at rotor  spin  frequency  care  must be taken  not  to  provide a high 

gain at that  frequency when placing  compensation in the  rebalance loop. 
Rotor  dynamic  imbalance in two gyros is a potential  source of system 

coning error  (see  Chapter 3). 

2. l o 2  Linear  Acceleration Error  Torques 

The gyro error  torques  produced by linear  case  accelerations -- 
or  more  correctly,  specific  force -- are derived in Appendix A. For con- 
venience  they are summarized below: 

7 = m6ifs-m6  f.+m6 f e s 1  0 0  

+m2 [K. f f +K. f2+(K  -K )f f - K f f.-Ksifi 
100s  1ss  ii ss i s  s o 0 1  '1 (2.1-19) 

Mass Unbalance - The first two terms in Eq.  (2.1-19)  which are 
proportional  to  the first power of the float  mass are called  mass  unbalance 

terms  because  they  are related to  effective  offsets of the  float  center of 

gravity  from  the  gimbal axis (see Fig. 2.1-5). The third  term, mbOfo, 
represents an experimentally  observed  effect which is thought to  result 
from  thermal convection currents in the flotation  fluid, 

Linear  Compliance - The  remaining  terms  in Eq. (2.1-19) are 
proportional  to the square of the  float  mass and result  from  linear  com- 
pliance. The  quantity (Kii- Kss) fifs, similar in form  to  the  anisoinertia 

terms of Section 2.1-1 is called  the  anisoelastic  toraue,  Observe that each 
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Figure  2.1-5 Mass Unbalance Terms 
for the Float  Assembly 

term in the  brackets can produce a non-zero  average  torque when the 
specific  force  components f.  f , and f are properly  correlated. 

1’ s 0 

2.2 SINGLE-DEGREE-OF-FREEDOM 
PENDULOUS ACCELEROMETER 

Er ro r s  introduced in the  single-degree-of  -freedom pendulous 
accelerometer  are  discussed below. Whenever  possible  the e r ro r  torque 
mechanisms are related  to  those given for the SDF gyroscope in Section 
2.1. Free use is made of both the  derivations  and  discussions  presented 
there and  in Appendix A. 

The SDF  pendulous accelerometer is illustrated in Fig. 2.2-1. 

Two major  differences between this  instrument  and  the SDF gyro are 
obvious.  The  direction  perpendicular  to  the output and input axes is 
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E. igure 2.2-1 Single-Degree-of-Freedom 
Pendulous  Accelerometer 

called the pendulum (p)  axis rather than the spin (s) axis. Also, the  instru- 
ment is assumed  to  consist of only two basic  parts: a case  and a combina- 

tion  gimbal  and  pendulum. The error  torques induced in the SDF pendulous 

accelerometer by angular motion  can be expressed by appropriately  modi- 
fying the  equations for the gyro. The resulting  expression  for output axis 
torques  produced by angular motion is developed in Appendix A. It is 
repeated  here : 

7 e = -I 00 (& 0 +Go)+@ pp -1.. 11 ) w P w.+I  1 O P  (wowi- cj ) 
P 

-I (bi+Ld w ) +I . (Loi- 2 w E ) + a  (I..-I ) (ap- 2 2  U i )  

oi 0 P Pl 0 11 PP 

+cy p [(I pp -I..) 11 w 0 cL1 p +I  00 .-I 1 +ai [ (I..-I ) Ldowi- Io0kp (2.2-1) 
11 PP 1 
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I Since the ideal accelerometer is insensitive  to  angular motion, 

all of the terms in Eq. (2.2-1) must be considered as error  torques. 
However, as in the case of the SDF gyro, the first term, -I zy' , together 
with any damping  torque  about the instrument output axis, is usually con- 
sidered as part of the unavoidable sensor  dynamics and included in any 
"ideal" SDF  pendulous accelerometer model.  The remaining  error  terms 
can be divided  into  several  broad  categories  similar  to many exhibited by 
the gyro. 

00 0 

Output Axis Angular Acceleration - Sensitivity  to  angular  accel- 
erations is present,  The  principal  contribution, that caused by angular 
acceleration  about the sensor output axis (-IooG0), is unavoidable because 
of the nature of the pendulous  acceleration  sensing  instrument. 

Anisoinertia - Several  anisoinertia  terms appear. Because  the 
gimbal and pendulum of the accelerometer can be viewed as a rigid body, 
the  opportunity exists here  to design an instrument which experiences no 
error  torques  from this  cause. 

Products of Inertia - Product of inertia  terms  appear in Eq. (2.2-1). 
The first of these  terms can be larger than that experienced by a SDF gyro if  

the pendulum shown in Fig. 2.2-1 deviates  from the p ' direction in the 0'- p' 

plane. (See Appendix A for  definition of primed  axis  directions. ) 

Misalignment - Misalignments  contribute  to e r ro r s  in the SDF 
pendulous  accelerometer. Many of the  misalignment  terms  in Eq. (2.2-1) 
are similar  to  those in the corresponding  expression  for  gyro  error  tor- 
quer.  However,  the  instrument is less  sensitive  to  those  effects involving 
misalignment  and  angular  motions,  since  no  large  angular momentum is 
present in the accelerometer. 
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Linear Motion - An equation for the error  torques  generated  by 

linear motion (acceleration) of the SDF pendulous accelerometer is estab- 
lished  in Appendix A; 

output axis - - -m6 (f. +a f - a  f +m6. f +a.f - a  f . )  (2,2-2) torque P 1 OP  PO ) 1(p 1 0  0 1  

In Eq. (2.2-2) fi,fo9 and f are specific  force  components  resolved  into 
accelerometer  case input,  output, and  pendulum axes, m is the mass of 
the gimbal  and pendulum  combination, 6 and 6. are components of the dis- 

placement between the pendulum center of mass  and the gimbal output axis, 
resolved in gimbal  coordinates,  and ao, ai, and Q correspond to a a. 
and a for the gyro. 

P 

P 1 

P 0’ 1’ 

S 

The effect of linear  compliance on accelerometer  errors  can  be 

illustrated by describing the center of mass  displacement as a function of 
linear  acceleration: 

6 = m(K . f . + K  f + K  f ) + a ‘  
P P l 1  PO 0 PP P  P 

6. = m K.A. +K. f + K. f )+ 6: (2.2-3) 
1 ( 11 1 10 0 1p p 

where 6 ‘ and 6: are the mass  displacements in the absence of specific 

force.  Substituting  Eq.  (2.2-3)  into Eq. (2.2-2)’ a more  detailed  torque 

equation results : 

P 
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The first term of Eq. (2.2-4),-m6' f . ,  measures linear acceleration  along 
the  input axis. Only this term  contributes  to output axis torque in the  ideal 
pendulous accelerometer,  The  pendulosity m6 ' is designed  into the instru- 
ment with care. All the remaining  terms  in this equation contribute e r ro r s  
to the  accelerometer. 

P l  

P 

The term  m6' a f is basically a cross-coupling  error  arising 
P O P  

from  rotation about the single axis of freedom  and  m6 'a f results  from 
gimbal-to-case  misalignment. Since accelerations  along the input axis may 
cause  considerable  excursions of the  gimbal  angle, ao, from  null,  sizeable 
rectification  (vibro-pendulous) e r rors  can be produced in this instrument 
by properly phased linear vibrations .with components  along  the input and 
pendulum axes 

P P O  

The  second  line of Eq. (2.2-4) illustrates  errortorque  contribu- 
tions  from unwanted mass unbalance and the last line  expresses  compliance 
error   terms.  It  can be seen that linear  compliance  effects  can  produce  con- 
stant error  torques. The accelerometer is also  subject  to  random  error 
torques  similar  to  those  in an SDF gyro. The e r ro r  in indicating  linear 
accelerations  along  the  case  fixed input axis of an SDF pendulous accel- 
erometer is simply the sum of all. error  torques (all terms in Eq. (2,2 -4) 

other than -m 6 ' f .  ), divided by the pendulosity , m 6 '. 
P l  P 

2.3 TORQUING  ERRORS 

In strapdown  systems  employing  sensors of the type treated  here, 
both gyros and  accelerometers are torqued. Part 11 of this document  des- 
cribes the three most common pulse  torquing  techniques in some  detail  and 
shows how to  analyze the closed loop response of instruments  using these 
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rebalance  schemes, In this section  sensor-level  errors  introduced by 
unequal  positive and negative  torque-pulse  weights are treated. 

In Part 11 three  pulse  rebalance  schemes are analyzed -- binary, 
ternary  and  time-modulation.  For the purpose of the discussion that fol- 
lows here the latter technique  will be lumped  with the first and  described 
as "binary torquing".  The  two share a common feature -- they are always 
producing a torque on the  float  regardless of the input -- which makes 
them  produce  identical e r ro r s  of the type  discussed here. 

Binary  Torquing - In the case of binary  torquing we can  model 
the torquing  error  in  terms of a general  plus-pulse weight and a general 

minus-pulse weight -- each of which differs a bit from standard. Taking 
the  standard  pulse weight as the incremental  angle A e  and  general  plus- 

and minus-pulse  weights as AO( l+  q+) and - A e ( l +  7)-), respectively,  for a 
pulse  duration of T  sec the drift rate becomes 

binary limit  cycle e r r o r  A e  + 
(small input case) (7) -q-) (2.3-1) 

This expression is valid  for  small  inputs, which do not materially  affect 
the  limit  cycle  waveform.  For  large, monotonic inputs,  the  binary  re- 

balance loop pulse  train  must  assume a non-zero  average  value  correspond- 
ing  to  the  input rate. The resulting moding pattern will be periodic, with 

n+  positive  pulses  and  n-  negative  pulses  during a time  interval  (n+ + n') T 

such that 

for  rational  values of wi/(AB/T). The  corresponding e r r o r  in indicated 

input angular  rate is 
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(n+vn++;p-) E! 
T 

which can be rewritten as 

binary moding pattern  error - - E (q+- q-) +?+; '-) wi (2.3-2) 
(large  input  case) 2T 

In the  case  where q = q = q, this  reduces  to q wio + - 

Ternary  Torquing - For ternary  torquing we can distinguish 
e r ro r s  in plus-pulse  weight, in minus-pulse weight, and in  the zero  torque 
level. Drift in  the  absence of an  input is due to   e r rors  in the zero  torque 
level: 

ternary  calibration - 
e r ro r  (no inputs) (2.3-3) 

Again, the  expression is approximately  valid  for  small  inputs. If we con- 
sider  ratios of wi /(Ae/T) of the nature  l/q  where  q is an integer  (other 
rational  ratios do  not  provide unique moding without specification of gyro 
dynamics)  the error  rate with ternary  torquing is: 

ternary moding e r ro r  

rational w. /( Ae/T)) 
(large  inputs with = q (T) + (q* - qo) wi o Ae 

1 

(2,3-4) 

The  quantity q* represents q o r  q- depending on whether w. is positive o r  
negative.  Figure  2.3-1 is a plot of the errors  described by Eqs.  (2.3-2), 
(2.3-3) and (2.3-4). Of course the e r rors  indicated a re  only correct for 

rational  values of wi/(AB/T) with binary  switching  and  ratios with charac- 
teristic  l/q  for  ternary switching. 

+ 
1 
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(b) Ternary  Torquing 

Figure 2.3-1 Torquer  Scale  Factor Errors  

It is also  to be noted that following calibration the stability of 

the  pulse  weights is of major  importance. The effects of changes  in tor-  
quer  scale  factor can differ, depending on the  scheme  used, For example, 

if v is much more stable than V+ and V -  a ternary  torquer will give 
smaller bias e r rors  in a benign environment. 

0 

It can be seen that the  binary gyro torquer  can  be  calibrated 
using two precise input angular rates (to  define  the straight line) while 
three  accurate  inputs are needed for the ternary  torqued  instrument. 



3. RE  LATIONSHIP  BETWEEN  STRAPDOWN  SYSTEM 
ERRORS AND  INSTRUMENT ERRORS 

A  measure of the  quality of any inertial  system,  gimballed or 
strapdown, is some weighted  combination of its attitude,  position and 
velocity  indication  capabilities,  depending on the  mission involved,, This 
chapter  deals with the relationship between the individual gyro and acceler- 
ometer  errors and the  accuracy of a strapdown  inertial  reference  system, 
placing  particular  emphasis on those e r ro r s  generated in the  system  cal- 
culations 

3 . 1  INFORMATION  FLOW 

Figure 3.1-1 is a schematic  representation of a strapdown inertial 
navigation  system.  The  navigation  computations are the same as for gim- 
balled  inertial  systems.  The unique feature of strapdown  systems is the * 

1-3076 

~~'""'""'p["'""l ACCELEROMETERS  TRANSFORE.4ATION 1 VELOCITY ~ 

MATRIX COhlPUTATlONS  POSITION 

I 
i ws i L"","". a GYROS 

Figure 3.1-1 Strapdown Inertial  Navigator 

* 
For ease of presentation it is assumed  here  that  navigation  takes  place 

in a set of inertially-fixed  coordinates,  represented by the subscript i. 
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coordinate  transformation which resolves  the  acceleration  (specific  force) 
vector, gs, from  system (body) axes  to navigation axes, using the direction 

cosine  matrix  C : S 
i 

a = C s a  -i 1 "s 
(3.1-1) 

The gyros measure inertial angular rate in body axes, w . This  measure- 
ment can be used  to update the attitude matrix,  using  the  relation 

-S  

es = css2 i 1 s  
(3.1-2) 

where the skew-symmetric  matrix s2 is composedofthe  elements of w viz: "s' 

n =  
S 

O -wzs 9 s  

wzs 0 -xs 

- 9 s  *S 0 

(3.1-3) 

As demonstrated in Chapter 2 a variety of potential e r ro r s   a r e  
introduced in the gyro and accelerometer  measurements of a and w It 

"s "s 

is easy  to  see that some of them,  notably  those which appear as constant 

errors at the  outputs of the sensors  themselves,  can  seriously  impair  the 
accuracy of a strapdown  navigator. Still others, which do not appear  to be 

serious when viewed at the  level of the  individual sensors, can combine in 
the  calculations  represented by Eqs. (3.1-1) through (3.1-3) to  produce 

large  errors at the  system  level.  The  mechanism  for  producing  such e r ro r s  
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can be viewed as a rectification of oscillatory  errors*  from  different 
sensors as the information is processed.  Gyro e r ro r s  affect the attitude 
matrix  through  Eq. (3.1-2). Errors in C: then  influence the calculation 
of - a i  through  Eq. (3.1-1) and the update of the coordinate  transformation, 
again through  Eq. (3.1-2). The latter mechanism is responsible  for the 
fact that serious  rectification  errors  result not only from  properly-phased 
outputs  from gyros and accelerometers but  from  pairs of gyros as well. 
Finally, it will be  shown that gyro and accelerometer  errors need  not  take 
the substantive  form  suggested by the error  torque  equations of Chapter 2 
in order  to be dangerous;  serious  rectified  system  errors can result  from 
failure of the inertial sensors  to  indicate  true motion, as a consequence of 
bandwidth limitations. For this reason the loop response  characteristics 
treated in Part I1 a re  as pertinent  to  the  generation of system-level  errors 
as the motion-induced error  torques  already  described. 

3.2 EQUATIONS FOR SYSTEM ERRORS 

General  equations  for the propagation of e r ro r s  in a strapdown 
navigation  system are as follows: 

(3.2-1) 

(3.2-2) 

* 
In actuality, the largest  errors  generated in the system  calculations 

result  from  rectifying  errors  from one sensor with correct  mea- 
surements  from  another, rather than errors  from pairs of instru- 
instruments ., 
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where 

r = inertial  position of the navigator -i 

6 = e r ro r  quantity 

The  sensor  errors that rectify  in the system  calculation are  oscillatory in 
nature,  usually  caused by vibratory motion. In order  to  treat  the vibra- 
tional and nominal  motions of the navigator  separately, we will isolate the 

vibration-induced e r ro r  contributions in Eqs. (3 .2-1)  and (3 .2-2):  

b a =  
"s snominal -t 's s b  

b 
S nominal s a > a  + c  szb Cb S 

where 

b = body coordinate  frame,  defining  actual 
orientation of the navigator 

s = system  coordinate  frame,  defining  nominal 
orientation of the  navigator 

-b a = linear  vibration  vector,  resolved in body 
coordinates 

"b 
w = angular rate vibration  vector  resolved in 

body coordinates 

'b = skew-symmetric  matrix  composed  from 
navigator  angular rate vibration  com- 
ponents  about body axes 

Cb = transformation  matrix  from  actual body 
frame  to  nominal body frame -- a func- 
tion of the  rotational  vibrations 

S 
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6e; = 6CSSls 1 +cs 1 6 (anominal 

. 

(3.2-3) 

(3,2-4) 

The first two te rms  on the right sides of Eqs. (3.2-3) and (3.2-4) 
illustrate  the  effects of misresolving  nominal motion because of attitude 
e r ro r s  (6  Cs), and of the  substantive e r ro r s  in the  outputs of the  inertial 
sensors -- 6(a,ominal ) and 6(Qnominal). The  latter are simply  resolved 
into e r r o r s  in the inertial frame  through  the  correct  attitude  matrix,  Cs i '  
The  third  entry on the  right  side of Eq. (3.2-3) accounts  for e r ro r s  in 
computing  the  gravitational  specific  force.  The  remainder of the terms in 

these two equations will be used in the  next  section  to  demonstrate how 
oscillatory  errors are rectified in the system  computer. It should be noted 
that any contributions which result  from  the  bracketed  terms can be viewed 
as additional errors  emerging  from  strapdown gyros and accelerometers 
whose  input axes are coincident with the  nominal, or system  coordinate 
frame,  since  the  brackets are preceded by the transformation C:. This is 
a useful way to  represent  system-level  errors which a re  generated in the 
computer 

1 

3.3 TYPICAL ERRORS GENERATED I N  SYSTEM  CALCULATIONS 

Four  classes of system-level  errors  generated in the  computer 
are described  here -- pseudo-coning,  undetected  coning,  pseudo-sculling and 
undetected  sculling.  Together  they  represent all serious  errors of this type 
that  result  from  anomalous  sensor  behavior. 
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Pseudo-Coning Errors - Oscillatory  errors at the gyro outputs 
can result in system-level  errors that have  the  same  effect as constant 
gyro drift rates. These  pseudo-coning e r r o r s  can result  from  properly 
phased  pairs of gyro e r ro r s  or from a similarly-related  combination of 
errors   f rom one gyro and actual motion indicated by another gyro. They 
derive  their  name  from the fact that true coning -- an  angular motion that 
returns the body to its original  orientation  periodically -- produces 
oscillatory  angular  rates about two orthogonal body axes, which are not 
in phase, and an average angular rate about the third  orthogonal  axis.  The 
magnitude of the latter  depends on the relative  phase and the  amplitudes of 

the  oscillations. If all the body angular  rates  are  properly  measured  they 

will, to within the  limits of the  attitude  matrix  update  algorithm  used,  be 

properly combined in the  computer and no system  error will  result. If, on 
the  other hand, oscillatory  angular motion is incorrectly  indicated by a gyro 

or  gyros it can be interpreted as coning  motion by the computer -- hence  the 
term pseudo-coning. When e r ro r s  of this type  arise, the necessary  average 
rate about a third axis is presumed  to  be  cancelled by an opposing inertial 

angular  rate of the  system. A drift rate e r ro r  about  the third axis occurs. 

* 

One of the  principal  causes of pseudo-coning e r ro r s  in strapdown 
systems is the e r ror  generated in single-degree-of-freedom  gyros by output 
axis angular  acceleration  (see Section 2.1-1).  The  effect  can be demon- 
strated by considering a pair of strapdown gyros. (There are three  such 

pairs in a triad. ) If an oscillatory  angular motion wx occurs  about  the  in- 

put axis of one gyro and about  the  output axis of the  other, an error  pro- 
portional  to GX is generated in the  latter.  The  computer  receives  indica- 
tions of wx from the first instrument and a false measurement 6w from 
the  other. Expanding the third term in Eq. (3.2-4) will show how they 

combine to give an average  system drift rate: 

Y 

~ ~~~ * 
See the  succeeding  discussion of undetected  coning errors  for a more 

precise  description of coning  motion. 
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I h a b  - ==. 

0 0 6Ldy 

[-,: Y : : ] 
where 6q = 6 w dt. The true  attitude  matrices  are given by 

Y Y 

0 

S 
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where cp = j wxdt, and 
X 

Multiplying out the first three terms in Eq.  (3.3-1) (the remainder of 
Eq.  (3.3-1) consists of higher  order terms):  

0 0 

Since w is assumed  oscillatory 60 will  not  have any average  value. How- 
ever, 6 w  is proportional  to the derivative of the  true  angular  rate and 
therefore 7~ radians out of phase with cpx. The terms cpx6u and 6cp w will 

Y Y X  
have definite  non-zero  average  values, of equal magnitude and opposite 

X Y 

Y 

signs, while the terms 6 w  and qX6q w will average  to  zero.  The  result 
is a constant  contribution  to the  derivative of the e r ror  in the  attitude 

matrix Ci . By comparing Eq.  (3.2-4) with Eqs.  (3.1-2) and (3.1-3) it can 

be  seen that the  average  error  generated can be interpreted as a constant 
drift rate, 6wz, in the  third  gyro of a triad. 

Y Y X  

S 

Pseudo-coning er rors  can also be generated by properly  phased 
er rors  in both gyros of a pair,  represented by certain of the higher ordered 
terms in Eq.  (303-1)0 However,  these  tend  to  be  small  in  comparison with 

those  provided by the combination of e r r o r s  and true motion described 

above 
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Undetected  Coning Er ro r s  - Since  coning motion can be exper- 
ienced by vehicles  containing  strapdown inertial systems it is important 
that its presence be detected. If the  oscillatory  angular motion that is 
often a part of coning is of a frequency beyond the  effective bandwidth of 
the  strapdown gyros only the average body angular rate will be reported  to 
the  system  computer;  while the vehicle  periodically  returns  to the same 
orientation. the attitude  matrix will indicate a slow turning  about one body 
axis. 

Coning  motion is characterized by out-of-phase  vibrations about 
one body-fixed axis and one space-fixed  axis. If q = Q sin vt represents 
the body-fixed angular  rate  oscillation  about the x body axis and 

r = R cos vt represents the space-fixed  angular  oscillation about an axis 
nearly  coincident with y body axis 

where q = 6 and r = 6. If the gyros measuring  q, r ,  and r p  do not pass 
signals at frequencies of u and higher 

r 0 -(RQ/2v)cos 2ut -r] 

6'b = [ RQ/2u)cos 2vt  
r 

0 

-q qJ 0 
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and 

Subst 

rn I 

6Cb = (x;) 
S 

0 0 -cp 

[a p, ;I 
ituting  the above expressions for 6Qb, 6Cs b and 6C; into  Eq. (3.3-1) 

and eliminating  higher  order  terms and terms which have  no  average  value 

over one period  T = 2n/v  yields: 

(3.3-3) 

The two non-zero  entries in Eq. (3.3-3) are of equal  magnitude and have 

opposite  signs. In fact, Ref. 6 shows* that the average  angular  rate  sensed 
by the third (z) gyro in the  triad undergoing  coning motion is given by 

oz = - rp  

= q(P 

Equation (3.3-3) can be written as 

(3.3-4) 

* ~~~~~ ~ 

Equation [9], with some  manipulation. 
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Equation  (3.3-4) bears out the intrinsic  feeling that since the 

only  motion reported  to the attitude  update  computer is the average angular 
rate about  one body axis, wz, the attitude  error will behave as though the 

z gyro exhibits a bias  error of the same magnitude, 

Pseudo-Sculling - Rectification of oscillatory  errors  from a 
gyro and an accelerometer with input axes not  coincident, or of true motion 
and gyro or  accelerometer  errors  properly  phased, can  cause  apparent 
accelerometer bias e r ro r s  at the system  level.  The point is illustrated by 
considering output axis angular  acceleration  errors in a pendulous accel- 
erometer  (see Section 2.2.2). The part of the last term of Eq.  (3.2-3) that 
lies within the square  brackets ran be expanded to give 

b b 
('s -b 

'a ) = Cbsa + 6C a +- 6Cs&b 
s-b s -b (3 .3-5)  

If this expression has an average value it can be interpreted in terms of 
constant e r rors  in the accelerometers. 

If it is assumed that an angular  oscillation  takes  place about one 
axis (x) and that the pendulous accelerometer whose purpose is to  measure 
specific  force  along an orthogonal  axis (y) has its output axis  parallel  to 
the  direction of rotation, the following expressions apply for  terms in 

Eq. (3,3-5), 
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Substituting  into Eqs. (3.3-5) and (3.2-3) gives 

(3.3-6) 

The  average value of 6a is zero but since 
Y 

'px = s w  Y dt  

and 6a is proportional  to h the product 'px 6a has an  average  value; an 
apparent  constant  acceleration  along the third  orthogonal  axis is generated 

in the system computations. 

Y  Y  Y 

Undetected-sculling - Since true  sculling motion -- characterized 

by oscillatory  linear and angular motion on body axes which results in an 
average  acceleration in the system  coordinate  frame -- can occur, any 
failure  to  transmit  information about the vibration  can  result in the system 
failing  to  properly  detect the presence of sculling.  For  example, if a linear 

vibration  along the y axis is accompanied by an angular  vibration about the 
x axis and the accelerometers fail to pass the high frequency  information 

Cb = I 0 1 - ' p x l  , * 6Cb = 0 
S S 
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I Equation (3.3-5) gives 

while the  true  acceleration i: is given by -i 

i: = c; cs b Zb -i 

(3.3-7) 

(3.3-8) 

As expected,  the  comparison of Eqs. (3 .3-7)  and (3 .3-8)  reveals that the 
e r ror  caused by failing  to  provide  all of the motion information  to  the sys-  

tem  computer is of equal magnitude and of opposite  sign  from  the motion 
taking  place -- the  sculling motion is not detected. Of course  the  same 
er ror  can be caused by inability  to  measure  the  angular  vibration o r  by 
detecting  neither  linear  nor  angular  oscillations.  Obviously,  the point is 

that if  average  linear  (sculling) or angular (coning) motion is generated by 
unmeasured  vibrations it will be misinterpreted by the  system. An evident 
tradeoff exists regarding  the bandwidth of the inertial sensors and the  fre- 
quency of the attitude  matrix  calculations.  (The  latter are generally dis- 

crete in nature and also  serve  to  reject high frequency  instrument  outputs). 
While a high overall bandwidth is needed to  prevent  errors due to  undetected 
motion it also  permits the transmission of high frequency  sensor  errors, 
which generate  pseudo-coning and pseudo-sculling  errors. The  best band- 
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bandwidth for the sensor-computer  combination  depends on the sensors 
employed and the vibration  environment. 

It will  be  demonstrated in the succeeding  chapter that e r ro r s  

generated in the  manner  described  in  this  chapter can assume  magnitudes 
larger than drift rates ,and accelerometer  errors  associated with good con- 
temporary inertial sensors. 
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I II 

4. POTENTIAL SYSTEM-LEVEL ERRORS 

In this  chapter  the magnitude of motian-induced e r ro r s  at the 
system  level is illustrated.  The  purpose of these  calculations is to 
demonstrate  that  dynamic e r ro r s  in strapdown  instruments of the type 
treated  here  can  produce  serious  errors.  Sections 4.2 and 4.3 also  serve 
to  introduce  the  reader  to a complex  computer  program that is available 
for  relating the dynamic  environment  to  strapdown  system errors.  

4.1 EXAMPLE I: BOOSTER LIMIT  CYCLE 

Simple  calculations of motion-induced e r ro r s   a r e  used here to 

illustrate  the  potential  seriousness of the  system  level  errors that can 

occur in a strapdown  navigator. For simplicity only the effects of strap- 
down gyro e r ro r s  are displayed. 

Environmental  disturbances  acting on a single-degree-of- 

freedom gyro are capable of generating  constant  torques, as shown in 

Chapter 2. The  maximum  amplitude of the resultant  constant  drift  rate is 
calculated in this section  for  several of these effects.  Angular-motion- 
induced drift  rates are emphasized  because  these a re  unique to  the  strap- 
down case.  Table 4.1-1 displays  the  range of values  assumed by important 
coefficients in a group of nine  typicai  single-degree-of-freedom  floated 
gyros intended for  strapdown  system  usage. For purposes of this  illus- 
tration, the following representative  group of parameters is chosen: 

* 

* 
Note that these parameters  are  not  necessarily  identical with those 

given in  preceding or subsequent  examples. 
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TABLE 4.1-1 

RANGE OF TYPICAL VALUES O F  GYRO PARAMETERS 
~ 

Parameter  

Rotor  Angular 
Momentum 

Float  Output Axis 
Moment 

Linear  Damping 
Coefficient 

Float  Time  Constant 

Rotor Spin  Axis 
Moment of Inertia 

Anisoinertia  Error 
Coefficient 

Uncertainty in Float 
Mass Unbalance 

Anisoelastic 
Error-Coefficient 

rorquer  Scale 
Factor   Error  

rorquer   Time 
Zonstant 

Misalignment 
h g l e s  

rorquer 
;ensitivity 

;ignal  Generator 
;ensitivity 

Symbol 

H 

Io0 

C 

T f  

5 s  11 
-I.. 
H 

mbi m6 
H ' H  

S 
" 

77 

Units 

gm-cm 2 
s e c  

gm-cm 2 

dyne-cm-sec 

msec 
- 

gm-cm 

de  g/hr 

( rad/sec)  2 
deg/hr 

g 

deg/hr 

2 

g2 

% 

P e c  

s e c  

deg/hr 
ma 

volt/rad 

_ _ _ ~  

Minimun 

5 x lo4 

100 

6 x lo4 

0 . 2 5  

40 

4 

5 x 10-3 

4 x 10-3 

1 x 10-2 

25 

1 

75 
_ _ _ ~  

5 

Maximun 

3 x 106 

250 

8 x lo5 

6.0 

140 

30 

3 .3  x 10-1 

1 x 10-1 

5 x 10-2 

100 

15 

1200 
~ - 

40 
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H = 2 x 10 5  gm-cm2/sec,  Ioig - - Iosg = 1.50  gm-cm2 

= 250 gm-cm , 2 
Io0 

L.. 

I,ig = 0.30 gm-cm' 

Issr = 80 gm-cm , 2 - I.. 
H ISs l1 = 4(deg/hr)/(rad/sec)' 

2 Iiir - 100, = 50 gm-cm - 

~ ~ ( 0 )  = 2.0 x rad rad , a  measure of rebalance loop 
7 stiffness at low frequencies 

m6. m6 
H -or -- H '- 5 x  10 -2 deg/hr 9 Torquer  nonlinearity = = 0.01% 1 

g  tg 

2 m -2 deg/hr r ( K s s -  Kii)  = 10 2 '  Misalignment  angles = k 5 s?c 
g 

The  strapdown  system is assumed  to  experience a six-g 
specific  force and angular rate oscillations which, in the  terminology of 
Sec. 2.1.1, give 

Wi = W = Ws = 0.2  rad/sec 
0 

u = 10 rad/sec 

for  each gyro. The  vibrations are  representative of those  anticipated in 

a typical  boost  vehicle as a consequence of limit  cycling in the  attitude 
autopilot.  The  peak  constant gyro drift rates (assuming  the  worst  com- 
binations of misalignment, XI ,  X2,  yo and y s  and specific  force  orienta- 
tion)  in a single gyro were computed,  using  the  relations  presented in 

Chapter 2. They are presented in Table 4.1-2. 

4-3 



TABLE 4.1-2 

MAXIMUM CONSTANT DRIFT RATE 

Error   Terms 

Spin-Input Cross Coupling 
Spin-Output Cross-Coupling 
Anisoinertia  (Rotor  Coupled) 
Anisoinertia  (Rotor Uncoupled) 
Float Mass Unbalance 

Anisoelasticity 

Torquer  Nonlinearity 
Gimbal  Products of Inertia 

Misalignment* 
Pseudo-Coning  due to Output 
Axis Effect** 

Constant  Drift Rate 
(de g/hr ) 

8.00 
0.10 
0.08 
1.52 
0.30 
0.06 
2.60 
0.08 

0.50 

5.00 

It should  be  noted that the  anisoinertia  error coefficient  chosen 
in this example was at the low end of the  range  presented.  This was done 
to  illustrate  the  fact that choosing  rotor and gimbal inertias to  minimize 

drift rate when the rotor is coupled to  the  gimbal by the rotor  speed  regu- 
lation loop causes  excessive  drift rates when the rotor is uncoupled. 

It can be seen  from the simple  calculations  performed here that 
the  strapdown  rotational  environment  produces gyro drift  rates which are 
large  compared  to  the  drift rates that are  characteristic of gimballed 
platform  systems.  This  observation  prompted  the  development of a 

* 
Computed on the basis of 0.05 rad/sec  constant  angular rates. 

** 
A system-level  error. See Chapter 3 .  
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computer program for  performing a 
motion-induced e r r o r s  in strapdown 
application of that  software  tool  to a 
in  the following sections. 

more  precise  determination of 
systems (see Appendix B). The 
particular  problem is described 

4.2 EXAMPLE 11: HELICOPTER, PULSE  TORQUED GYROS 

A digital  computer  program has been written  for the purpose of 
calculating,  source by source,  system  level  errors  generated by strap- 
down inertial  sensors (see Appendix B). The  program  presently is capa- 
ble of computing  such e r ro r s  for strapdown systems employing one par- 
ticular (single-degree-of-freedom) gyro, in the pulse-torqued or single- 
axis-platform  modes, and one of two accelerometers  (single-degree-of- 
freedom  pendulous and vibrating  string), though it is by no means  restricted 
to  these. The set  of equations coded take as their inputs  instrument  dy- 
namic  error  coefficients and transfer  characteristics, and up to 36 detailed 
spectral  density  functions  describing the measured or postulated  vibration 
environment.  Devices  to  perform  precise  measurements of environment 
are becoming  available (Ref. 7) and the  value of the details  incorporated in 
the  program will increase as accurate  vibration  data a r e  gathered  for a 
variety of vehicles. 

Vibration spectral  data  for  the  cruise and hover  phases of a 
CH-46C helicopter  flight were generated (Ref. 8) for  use in the  analysis 
of vibration-induced  strapdown  system errors.  The  orientation of the 

data  coordinate  frame is shown in Fig. 4.2-1.  It was assumed in the 

analysis that the  strapdown  navigator  frame, or  body frame, was coinci- 
dent with this set of axes.  The  orientation of the  inertial  instruments 
relative  to the body frame is shown in Fig. 4.2-2.  The  vibration  spectra, 
typical  samples of which are shown in Figs. 4.2-3,   4.2-4,  and 4.2-5, 
reflect  the  harmonics of the fundamental  rotor  frequency, 4Hz, and also 
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Figure 4.2-1 Orientation of Data Coordinate 
Frame in CH 46-C Helicopter 
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Figure 4,2-3  Power  Spectral 
Density, z Axis 
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contain  power at higher  frequencies  due  to  the  turbine  engines. In this 

helicopter,  the  most  significant  angular  vibrations  occur  about  the longi- 
tudinal axis and vertical  linear  vibration is dominant. 

Tables 4.2-1 and 4.2-2 and Fig.  4.2-6  contain  the input data des- 

cribing the physical  parameters of the instruments (Norden 1139 gyro and 
Kearfott 2401 accelerometer),  from which the e r ror  coefficients a r e  defined. 
The  remaining  data in the tables  establish the transfer characteristics of the 
gyro, accelerometer and computer,  for which gain diagrams are shown in 
Figs.4,2-7,  4.2-8, 4,2-9. If bandwidth is taken as the  frequency at which the 

closed loop gain falls to l / , , o f  its low frequency  value,  the gyro, accelerom- 

eter and computer bandwidths are  approximately 70 Hz, 85 Hz and 25  Hz 

respectively.  Indications of motion at frequencies  higher than 25Hz will  not 

enter  the  system  calculations  since,  for  the  computer  algorithm  cycle  time 

selected,  the  computer  effectively  reduces the instrument bandwidths. From 
an examination of Figs.  4.2-3 and 4.2-4, it is evident that the dominant 

rotational  vibrations, which occur at lower  frequencies,  will  enter  the  sys- 
tem  calculations,  but that significant  high-frequency  linear  vibrations will 

not be detected.  The  error  analysis  performed with the computer  program 
substantiates  these  observations. 

I 

It is difficult to  determine,  from  the  vibration  spectral  data 
employed in this study, whether or not  the  strapdown  navigator  experi- 

ences  true coning  and true  sculling  motion,  characterized by no net 
rotation or translation of the  navigator  coordinate  axes. In order  to 
verify that such  motions  do  occur, it would  be necessary  to define the 

vibration  environment in both the body coordinate  frame and the  system 
coordinate  frame. In the error  analysis  described here it was assumed, 

without verification,  that  the  strapdown  system  under  consideration is 

undergoing true coning and true  sculling motion and the  system-level 
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TABLE 4.2-1 

COMPUTER  PROGRAM INPUT DATA 

Norden  1139 Single-Degree-of- 
Freedom Gyro 

~ 

Io0 = 354.0 gm-cm2 
C = 1.38 x106 dyne-cm-sec 

T1  = 0.0143 sec 
Tz = 1.0 sec 
T4 = 0.00143 sec 
T, = 0.634 x sec2 
Tb = 0.1125 X SeC 

Tc = 1.0 
q0 = 70.0 mv (rms)/mrad 
QC = 442.0 volts  (dc)/volt (rms 
Kdc = 33.0 
% = 22.0 ma/volt  (dc) g 
K = 1110.0 dyne-crn/ma tg 
&.f = 0.0978 rad/sec/volt  (dc) 

H = 2.5 x 105  gm-cm2/sec 
Iii = 592 gm-cm2 

Zoo = 400 gm-cm2 
Issg = 388 gm-cm2 
lssr = 210 gm-cm2 

(K&s-K&) = 0 -06 deg/hr/g2 
r r r  li = 60 = dS = 1.5  deg/hr/g 

SFg = 100 pprn 
Dgo=Dgs = 0.5 

Q = 100 ppm 

Kearfott 2401 .Pendulous 
Accelerometer 

Ioo = 0.16 gm-cm 2 

C = 400.0 dyne-cm-sec 
M = 735.0 dyne-cm/rad 

T4 = 0.00196 sec 
Ta = 0.634 x sec2 
Tb = 0.1125 X SeC 

Tc = 1.0 
KPo = 40.0  mv (rms)/mrad 
Kac = 153.0 volts  (dc)/volt (rms) 
E& = 33.0 
KSg = 0.62 =/volt (dc) 
K = 163.0 dyne-cm/ma 

&f = 0.62 g/volt (dc) 
P = 1100 gm-cm 

tg 

IOo = 14  gm-cm2 
(lii-Ipp)/P = 1.5 pg/(deg/sec)2 

SFa = 100  ppm 
K2 = 10 pg/8 

DaP = 0.5 m% 
F = 10 ppm 

pxl = 15-9 cm 
px2 = 2.3 cm 
px3 = 6.6 cm 
pyl = 2.3 cm 
py2 = 6.6 cm 
py = 2 . 3  cm 3 
pzl = 9.4 cm 
pz2 = 26.8 cm 
pzg = 5.0 cm 
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TABU 4.2-2 

LIST OF SYMBOLS 

Transfer  Functioq  Pararnetcrs 
Armlicable to l3otii-Lnstruments 

Io,, C,  M sensor  transfer function 
parameters 

TI, T2,T4  compensation  network 
parameters 

Ta, Tb,T,  bandpass  filter  parameters 

KPO 
& I C  demodulator  ac gain 
%C compensation  network 

% 
Ktg  torque  generator  gain 
Ksf instrument  scale  factor 

sensor pickoff  gain 

dc  gain 
signal  generator gain 

Gyro  Parameters 

H gyro angular  momentum 

Iii moment of inertia of the 
gimbal-rotor  combination 
about  the  gyro  input ads  

bo moment of inertia of the 
mnmbal-rotor combination 
about  the gyro output axis 

Issg  moment of inertia of the  gimbal 

ISS, moment of inertia of the  rotor 

about  the gyro spin  axis 

about  the gyro spin  axis 

K.’ LK  where  m  is  the  rotor  mass and In2 
lS is Kis is   the  structural   com- 

pliance  coefficient  relating 
rotor  center of mass  displace- 
ment  along  the  gyro  input axis 
to  acceleration  along  the gyro 

apply for the other  coefficients 
spin  axis;   similar  eqxessions 

a:== 6. where  m is   the   rotor   mass  and 
6i i s  the  disphcement of the 
float  center of mass  along  the 
input asis:   similar  expressions 
apply  for  the  other  coefficients 

gyro output scale   factor   error  SFg 

Dgo,Dgs misalirnmcnt of the  kyro  coordl. 
nnte  frame  about  the output  and 
spin  axes  respectively. 

c torque  Kenerator  scale  tactor 
asymmetry 

Accelerometer  Parameters 

P pendulosity of pendulum- 

Ii  i  moment of inertia of the 

gimbal  combination 

pendulum-gimbal  combina- 
tion  about  the  accelerometer 
input axis 

moment of inertia of the 
pendulum-gimbal  combina- 
tion  about  the  accelerometer 
output axis 

moment of inertia of the 
pendulum-gimbal conmbina- 
tion  about  the  accelerometer 
pendulous  axis 

product of inertia of the 
pendulum-gimbal  combination 

put  and pendulous axes 
about  the accelerometer  out- 

Io0 

I 
PP 

I 
OP 

K.’ = d K  where  m is the  mass  gimbal- 

the  structural  compliance  co- 
penclulum structure and Kip i s  

efficient  relating  the  gimbal- 
pendulum  center of mass   dis-  
placement  along  the  accelerom- 
eter  input axis  to  acceleration 
along  the  accelerometer pendu- 

apply for the  other coefficients. 
lous ‘axis: s imilar  exyressions 

lp P  ip 

SFa  accelerometer  output scale  
fac tor   e r ror  

K2 accelerometer output scale 
factor  non-linearity 

DaP 
misalignment of the  accelerom- 

the  pendulous  axis 
eter  coordinate  frame  about 

c torque  generator  scale  factor 
asymmetry 

P 
ponents of acceleronmeter  axis 
vector of displacement  com- 

system  from  the body coordinate 
f rame 
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Figure 4.2-6 Linearized Model for  Gyros and Accelerometers 
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Figure 4.2-7 Hamilton  Standard  Figure 4.2-8 Kearfott 2401 Pen- 
1139 SDF Gyro  dulous  Accelerom- 
Gain Diagram  eter Gain Diagram 

errors  were defined  accordingly, If, on the  other  hand,  the  navigator 
actually  experiences a net  angular  or  linear  translation in this particular 
vibration  environment,  the e r ror  introduced is the  negative of that com- 
puted here. 

The  dominant  sources of vibration-induced er ror  computed for 
the  helicopter when the gyros a re  pulse-rebalanced are summarized in 
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FREOUENCY(Hz)  

Figure 4.2-9 Sample-and-Hold Computer 
Model Gain Diagram 

Table 4.2-3. For this mission,  rebalance loop asymmetry in the gyros 
is a major  source of vibration-induced error .  Gyro output axis  sensi- 

tivity, an error  arising  from  the  instrument's  sensitivity  to  angular 

acceleration about its output axis, also  contributes  significantly  to con- 
stant  angular  velocity e r ror .  As can be  predicted  from the examination 

of the effective  sensor bandwidths,  undetected  coning is a relatively  in- 
significant  source of system  error but  undetected  sculling is the  largest 

effective  accelerometer  error,  Accelerometer  size  effect, due to the phys- 
ical  separation of the  accelerometers  from the center of the  strapdown 

package, is also a major  source of vibration-induced er ror  in the system. 

It is useful  to  compare  these  error  values with representative 

gyro and accelerometer  bias  errors in order  to  measure  their  relative 

significance. A 100 p g  bias is a representative  figure  for pendulous 

accelerometers so that vibration-induced  accelerometer e r ro r s   a r e  un- 

important  for this mission. However, gyro bias er rors  of 0.01 deg/hr 
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TABLE 4.2-3 

VIBRATION-INDUCED ~~ ~ ERRORS IN A STRAPDOWN  NAVIGATOR 

hicle  : CH-46C Twin Rotor  Helicopter 

!dial Ins t ruments :  Norden 1139 SDF Gyro 
Kearfot t  2401 Pendulous  Accelerometer 

~ ~ -~ 

Pr inc ipa l   Sources  of Vibration-Induced Error 

System  Dr i f t   Ra tes   (deg/hr )  
Axes 

z -" X Y 

0 Gyro  Output Axis Sensitivity .004 .252  .208 

0 Rebalance Loop Asymmet ry  .123 .I21  .059 
(rms e r r o r )  

0 Anisoinertia .025  .012  .010 

0 Undetected  Coning  Motion .005  -.005 - .038 

System  Acceleration Errors (g) 

0 Undetected  Sculling  Motion -4.47 

Size  Effect  -3.95 

Rebalance Loop Asymmetry 0'. 26 
( r m s   e r r o r )  

0 Anisoiner t ia  -0.47 

0 2nd Order   Nonlinear i ty  0.20 
( rms  error) 

0 Gyro  Output Axis Sensitivity 0.55 
(contributing  to  pseudo-sculling 
e r r o r )  

0 Input-Pendulous  Crosscoupling -0.50 

-1.92 3.20 

-1.95 -0.43 

0.32 0.89 

-0.49 0.47 

0.20 0.77 

0.13 -0.46 

0.05 0.50 

are regarded as typical and rebalance loop asymmetry and output axis 
sensitivity  result  in  vibration-induced e r ro r s  that are an order of mag- 
nitude larger. It can  be concluded that,  for  the inertial sensors con- 
sidered and in the  helicopter  vibration  environment, a serious  system 
attitude  drift rate will be caused by motion-induced errors  unless  steps 
a re  taken  to  compensate  certain error  torques  arising in the gyros. 

Additional results obtained  with the  program  illustrate its fur- 
ther  usefulness as a design  tool.  As mentioned  in Chapter 3,  a decrease 
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in the cycle  frequency of the  navigation  system  computer can effectively 
reduce the bandwidth of the inertial sensors,  preventing  higher  frequency 
vibrations  from  entering the system  calculations.  The  effect of pseudo- 
coning and pseudo-sculling e r ro r s  can be  reduced  in this manner but the 

e r ro r s  due to undetected  motion are consequently  increased.  Figure4.2-10 
illustrates  the  tradeoff  for  pseudo-coning  about the y body axis caused by 

gyro sensitivity  to output axis angular  acceleration and undetected  coning 
about  the  y body axis. A computer  sampling  period of 0.18 seconds 

balances  the  effect of these  error  sources. 

R -2234 

0.1c 

0.1 

0.1 2 

0.1 c 

0.0 8 

0.06 

0.04 

0.0 2 

0 

PSEUDO -CONING DUE TO 
OUTPUT AXIS SENSITIVITY 

0. -. ".. =.. -... -... \ *... .. .*. 
.a. e. 

a. UNDETECTED  CONING e. / *. a. e. e.. -0.. e.. 

-. *. . 
0%. *.. .. 

I I I I I 

0.05 0.1 0 0.1 5 0.2 0 0.25 0.30 

COMPUTER CYCLE TIME ( s e c )  

Figure 4.2-10 Coning Error as a Function 
of Computer  Cycle  Time 
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,4.3 EXAMPLE III: HELICOPTER, SINGLE-AXIS-PLATFORM GYROS 

Table 4.2-3 shows that, for a typical  helicopter  vibration  en- 
vironment, the SDF gyro torque  rebalance loop is a significant  source of 
strapdown  system  error. Also, one er ror  caused in part by angular mo- 
tion  about the gyro input axis  (anisoinertia  error) is significant.  These 
kinds of e r ro r s  can be largely  eliminated by utilizing  single-axis  platforms 
(SAP'S) to  isolate  each gyro from  angular  vibrations about its input axis 
and to  convert it into a null-seeking  instrument.  The  effects of other 
sources of rectified e r ro r  which involve input-axis  angular  vibrations, 
such as spin-input  crosscoupling, can also be considerably  reduced by 

employing the SAP configuration. 

The TASC computer  program  described in Ref. 3 was modified to 
analyze  vibration-induced e r ro r s  in strapdown  systems which use  gyros in 

the SAP mode. To  compare  vibration-induced  system errors  for the two 
modes of gyro operation,  program input data employed in the  previous 
example was used to  generate e r ro r  values  for  the SAP strapdown  system. 
The  nominal  orientation of the gyro axes, in the absence of angular motion 
of the body, was assumed  tobe the  same as shown in Fig. 4.2-2. In the 
SAP system,  each  gyro is isolated  from  angular motion  about the input 
axis by the gimbal  system.  Changes in  SAP orientation with respect  to  the 
body axes result only from  imperfect  isolation.  This  relative motion is 

accounted  for in the  program by appropriate  transformations of the  vibra- 
tion spectral data. All of the Norden 1139 SDF gyro characteristics 
identified in Table 4,2-1 are used in the SAP analysis, except  those  asso- 
ciated with the torque  rebalance loop. Additional parameters needed to 
describe  the  dynamics of the SAP gimbal  model  used  in this analysis are 
summarized  in  Table 4.3- 1. 
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TABLE 4.3-1 

SAP TORQUER CHARACTERISTICS 

Parameter 

Coefficient of viscous  damping 
between  the sh.2ft and the 
vehicle 

Moment of inertia of the gyro 
and SAP gimbal  shaft  about 
the gyro input  axis 

Constant  flux  motor  coefficient 

Armature  reactance 

Torque motor  time  constant 

Constant  gain,  float  angle  to 
armature  voltage  transfer 
function 

Transfer  function parameters,  
float  angle to armature  voltage 
t ransfer  function 

Symbol Units 

iyne-cm-sea 

gm-cm2 

iyne-cm/am 

ohms 

s e c  

volts/rad 

rad/sec 

rad/sec 

- 

" 

P 

Typical 
Value 

0 

5600 

2 . 4 6 ~  lo6 

a. 55 

2.59 x 1 0 - ~  

1.0 x lo5 

1.0 x 103 

1.0 x 104 

0.5 

0.95 

The  closed-loop transfer characteristics  for  the Norden 1139 

gyro in a SAP configuration,  involving both the sensor and gimbal  torquer 

dynamics, are  derived in Appendix D. The SAP electronics  transfer func- 
tion L(s)  (see Appendix D) is represented by 

The  gyro error  response  to  vibrations about its input axis is shown in Fig. 
4,3-1. As shown, the  gyro  error  becomes  more  sensitive  to  input-axis  vi- 
brations as the  vibration  frequency  increases but remains  relatively 
small  over  the  entire 2000 Hz vibration bandwidth. This transfer charac- 
teristic  provides  effective  vibration  isolation  since the dominant  angular 
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Figure 4.3-1 Gyro  Response  to Input Axis Vibrations, 
Hamilton  Standard 1139 SDF Gyro, 
Operated as a SAP 

vibrations  typical of a helicopter  environment  occur at lower  frequencies, 
as shown in Fig. 4.2-4. Errors  still result  from  angular  vibrations about 
the output and spin  axes of the gyro, since no motion-isolation is provided 
about these axes, and from  linear  vibrations, as in a conventional strap- 
down configuration.  The transfer  characteristics which describe  the 
response of the gyro to  these  disturbances are also  derived in Appendix D. 

The  Kearfott 2401 pendulous accelerometers  remain  in a body- 
fixed orientation in the SAP system and the  accelerometer data contained 
in  Table 4.2-1 are directly  applicable  to this  analysis.  The  sample-and- 
hold computer  model  described in Section 4.2, having a sample rate of 
50 Hz, is also  used in generating the SAP vibration-induced errors .  The 
results of this  analysis are summarized in Table 4.3-2. 

The  largest  vibration-induced  drift rates in the SAP strapdown 
system  are  caused by disturbance  torques  due  to  angular  accelerations 
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TABLE 4.3-2 

VIBRATION-INDUCED  ERRORS n\T A 
SAP STRAPDOWN  NAVIGATOR 

Vehicle:  CH-46C Twin Rotor  Helicopter 

Inertial  Instruments:  Norden 1139 SDF  Gyro  With 
SAP  Kearfott  2401  Pendulous  Accelerometer 

principal  Sources of Vibration-Induced E r r o r  

Axes 
System  Drift  Rates  (deg/hr) X Y Z '  -" 

a Gyro Output Axis  Sensitivity - .001  .234 .197 

a Undetected  Coning  Motion - .040 ,022 - .022 

System  Acceleration  Errors (pg) 

a Undetected  Sculling  Motion -3.14 -3.81  2.73 

Size  Effect -1.71 -1.12 2.94 

Rebalance Loop Asymmetry 0.26 0.32 0.89 
( r m s   e r r o r )  

Anisoinertia  -0.47 -0.49 0.47 

I a 2nd Order  Nonlinearity 
(rms e r r o r )  

0.20 0.20 0.77 

Input-Pendulous  Crosscoupling -0.50 0 .05  0.50 

Gyro Output Axis Sensitivity 0.71  0.11  -0.37 
(contributing  to  pseudo-sculling 
e r r o r )  

about  each  gyro output axis. The SAP configuration  does not isolate  the 

gyro  from output axis motion and the resulting  error magnitudes are 
about  the same as for a torque  rebalanced gyro. The minor  difference 

in drift rates  results  from  slightly  different gyro response  characteris- 
tics in the two modes. A comparison of Tables 4.2-3 and 4.3-2 also 
shows that, for the design  parameters chosen in this analysis,  undetected 
coning is a slightly more  serious  problem  for the SAP strapdown  system. 
But for both configurations the undetected  coning er ror  is about an order 

of magnitude smaller than the largest vibration-induced e r ro r s  in the 
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system.  System  drift rates due to  the remaining  sources of vibration- 
induced er ror  are all below a level of 0.01 deg/hr.  As noted earlier, 
rebalance loop asymmetry, a prominent  source of e r ro r  in Table 4.2-3, 

does  not  exist in the SAP  strapdown  system.  The  vibration  isolation 
provided by the SAP also  greatly  reduces the significance of anisoinertia 
effects and spin-input  crosscoupling. In spite of these improvements, 
the remaining  vibration-induced e r r o r s  in the system are still much lar- 
ger  than  typical  platform gyro bias   errors  of 0.01 deg/hr. 

Accelerometer  error  sources which result in  a rectification of 
vibrations in the  instrument are of course  unaffected- by the change in gyro 
configuration.  These error  sources are identified as those which have 
exactly  equivalent  values in Tables 4.2-3 and 4.3-2. The  remaining 
acceleration  errors  rectify at the system  level and hence  involve indicated 
system  attitude, obtained from  gimbal  angle  readouts in the SAP configu- 
ration.  Differences in the gyro transfer  characteristics in the different 
modes of operation are reflected in the slightly  different  error  values in 

the two tables. 

The  order of significance of the  acceleration  errors is the same 
in both the  strapdown and SAP configurations, with undetected sculling 
motion and size  effect as the major  contributors. As noted in Section 4.2, 
this  level of vibration-induced e r ro r  is well below the  typical pendulous 
accelerometer bias er ror  of 100 pgo 

From the calculations  performed in this chapter it is evident that 
strapdown  inertial  systems with motion-induced e r ro r s  may be unsatis- 
factory  unless  the  sensor  parameters are carefully  chosen or some  form 
of compensation is provided. While the SAP gyro configuration  offers  some 
relief by isolating  each gyro from input axis vibrations it does not appear 
to  reduce the overall  level of system drift rate to any great degree,, 

4-19 



PART 11: PULSE  REBALANCE LOOPS 



5. DESCRIPTION OF PULSE TORQUING  SCHEMES 

5 . 1  PULSE REBALANCED GYROS 

Gyros  used  in  strapdown  navigators a re  likely t o  experience 
large angular motions  about  the  case input* axis. In order  to avoid the 

complications  connected with a large output angle, o! a powerful  torque 
generator is included  in  the  instrument and the  rotor  spin axis is kept in 

close  coincidence with the  spin  reference axis. By keeping the output angle 
small,  variations  in 01 can  be  attributed  to  angular motion about the case- 
fixed  input axis. Information  concerning  angular motion  about the input 
axis is largely  contained in the  history of torque  required  to  cage,  or re- 
strain. the wro about its outmt axis. 

0, 

0 

Direct  determination of the  torque  applied is difficult and most 
designers  rely on measurements of current flow in the  torquer windings 
to  indicate  the  moment  produced. Unfortunately,  the torque  generator  does 
not  exhibit a gain characteristic which is sufficiently  linear,  and, i f  a wide 
range of torquer  currents is employed,  extensive  calibration is required. 
A common way to avoid  problems with torquer  nonlinearity is to  permit 
application of only two torque  levels,  equal in magnitude  and  opposite in 
sign. (A third, or zero  level may also be considered. ) In this  case, the 

torque  generator  need only be  calibrated  and  adjusted at two (or at most 
three)  distinct  points on its gain curve,  permitting  very  accurate  control 
of the  moments  applied  to  the gyro output axis. A further  refinement to  the 
gyro rebalance  mechanism is provided by carefully dividing the  torquer 
current  into  pulses of known duration.  Each  pulse  then  represents a fixed 

* 
Figure 2.1-1 illustrates the axes  discussed  here, 
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incremental  rotation of the gyro about its input axis and the gyro  rebalance 
loop output is well suited  for  calculating  system  attitude  changes  using a 
digital computer,  Ideally, the rebalance  torque occurs as a sequence of 
pulses of positive  and  negative  torque,  each  pulse having the same weight, 
and the strapdown  gyro output consists of a train of positive and negative 
electronic  impulses  accurately  representing  incremental  rotations about 

the  sensor input axis. The gyro is thus  said  to be  "pulse rebalanced. ' I  

Binary  Delta Modulation - The  binary  delta modulation pulse re- 
balance  scheme always provides a rebalance  torque;  the  possibility of 

omitting a torque  pulse is purposely  excluded.  This  mechanization  can  be 
represented by a binary  logic  element  inserted between the  torquer  and a 
signal  representing  the gyro output angle  (see  Fig. 5.1-1). The torquer 
current, of magnitude D, is supplied with a direction  (sign) depending on 
the sign of the output angle.  Pulses of torque  are  created by only allowing 

the  logic output to change at fixed interv::.ls, T. A further  refinement  may 
be employed,  permitting  torque  to be applied only over a known fraction of 
each  interval, but this  has  little  bearing on the aspects of pulse  rebalance 
techniques  under  consideration  here,  Figure 5.1-2 shows a representative 
train of torque  pulses  applied  to a gyro gimbal when binary  pulse  torquing 
is employed.  The  shape of the  pulses  generated  differs  from a rectangle 
because of lags  in both the  torquer  and  the  current  source  driving it. 

Ternary  Delta Modulation - The ternary  delta modulation techni- 
que differs  from  the  scheme  described above because it permits the absence 

of a torque  pulse when the output angle magnitude is small. The mechani- 

zation  can be represented by a relay with an  input  deadzone inserted between 

the output angle  signal  and  the  torquer.  Figure 5 , l -  3 illustrates  the  ternary 

detection  logic.  The  deadzone  width, 26,  is symmetric about zero and  de- 

fines a range of output angles  for which no  rebalance  torque is applied. 
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Figure  5.1-3  Ternary Logic 
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For low-frequency inputs 6 can  be related  through  the  gyro gain H/C to  an 
angular  rotation about the input axis which will not  be  detected by a gyro 
using this rebalance  technique.  However,  for  input  frequencies  above  the 
float bandwidth, the relation is more complex. All other  aspects of the 
ternary  delta modulation  technique are identical  to  those of the  binary 
approach  just  discussed. 

Time Modulation - A third  pulse  torquing  technique,  time- 

modulated  torquing,  adds  the gyro output angle  to a periodic  waveform  and 
employs  binary  logic on the sum.  Figure 5,l-4 illustrates this  approach. 

The binary logic is interrogated at a frequency which is a multiple of the 

sawtooth  frequency, In this  manner,  each  period of the  added  waveform 

is divided  into an even integral  number of parts,  Current  driving  the  tor- 

que generator  can only be switched at the  moment the binary logic is inter- 
rogated. 

If the output angle is zero, the torquer  provides a pair of pulses, 

one positive  and one negative.  The  torque  pulses a re  of equal  duration and 
occur at the frequency of the  sawtooth  wave,  The net effect of each  pulse 

R - I I 9 1  

- A d  SAWTOOTH WAVE 

I OUTPUT 
SIGNAL GEI.IEffiTOR I 

Figure 5.1-4 Time-Modulated  Torquing 
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pair on the  output angle is zero, but the  float  will  oscillate at the sawtooth 
frequency.  To  avoid  detecting  this  float  oscillation  the  signal  representing 
output angle is usually  passed  through an appropriate filter. If the filtered 
indication of output angle differs from  null,  the  pulse  pairs  appear at the 

same  frequency but the  pulses  in  each  pair are of different  duration, is 
illustrated  in  Fig. 5.1-5, The  difference  between  the  length of two adjacent 
pulses is such that the net  effect is to  drive the output angle  toward  null. 
The  sawtooth  amplitude is chosen to  ensure  that  the  torquer always provides 
a moment  in the  same  direction at the start of each sawtooth period; the 

amplitude of the added  waveform is larger than  any  anticipated  signal re- 
presentation of a For this reason,  the  torquer  current always changes 
sign at the start of a new sawtooth.  Also, the current is only allowed to 
reverse once during  each  period of the  added  waveform.  These  restric- 
tions  ensure  the  appearance of one positive  and one negative  pulse, in the 
same  order,  each sawtooth  period. 

0' 

b-- SAWTOOTH PERIOD - 
Figure  5.1-5  Torquer Waveform for 

Time-Modulated  Torquing 

When time-modulated  torquing is employed, the gyro output can 
take two forms. In one case a pulse  sequence is provided at an even mul- 
tiple of the  sawtooth  frequency,  corresponding  to  the rate at which the binary 
logic is interrogated.  The output appears as a long series of pulses of one 
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sign followed by a long series of pulses with the opposite  value. ' Each  pulse 
represents an incremental  rotation  about the input axis, of a magnitude 
determined by the torquer  capability and the interrogation  frequency. Most 
of the information  contained in this form of output represents the added 
waveform. Only the  difference between the number of pulses in two succes- 
sive  series can be construed  to  represent Q! and  consequently  motion  about 
the  gyro input axis.  More  commonly, this difference is determined by sum- 
ming  pulses  over  each  period of the sawtooth.  The  net difference,  available 
at the  frequency of the  sawtooth  wave, represents  the  information  content of 
the  gyro  output, Since the  sawtooth  period is typically on the order of one 

millisecond the latter form of the gyro output has a bandwidth compatible with 

many of the  computers  used  to  process  angular motion information. 

0 

If a fixed  increment  Digital  Differential  Analyzer (DDA) is used 

to  process gyro  outputs, the high frequency  pulse  train can  be  employed. 
However, as stated  earlier  most of the  information  contained is related  to 
the  oscillatory signal that was added to cz0 and  the  attitude  calculations will 
exhibit this oscillation; i f  all gyros are not  using  the  same sawtooth  wave, 
serious pseudo-coning  system  drift rates can be caused. 

Summary - All three  pulse-torquing  techniques  provide  digital 
outputs which represent  increments of angular  rotation about  the sensor 

input axis,, Angular motion is implied  from  carefully  calibrated  torque 
pulses  applied  to the gyro gimbals,  corresponding  to  each output pulse. 
Any deviation of the  actual  time  integral of torque  from that represented 
by each output pulse will  cause an e r ro r  which is not  recoverable, i. e., 
differs in nature  from  gyro output errors  caused by storage of information 
by the  float.  Constant  deviation of the  torque  pulse weight can cause  con- 
stant  gyro drift rates while  random  variations  provide  random output 

errors .  Any difference between the net  torque  pulse  generated and that 
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implied by each output quantum is a significant  potential  source of e r ro r s  
in strapdown sensors. 

When system  accuracy is considered,  factors  such as quantiza- 
tion and the  information rate of pulse  rebalanced  gyros are important.  The 
presence of imforced  oscillations in the gyro output is also  considered when 
comparing  strapdown gyro torquing  schemes. In addition,  frequency re- 
sponse  characteristics  and  energy  dissipation in the gyro loops are signi- 
ficant.  The  major  causes of pulse  rebalancing e r ro r s  are described below, 
followed by a discussion of the  relative  advantages of each  torquing  scheme. 

5.2 GYRO ERRORS  ATTRIBUTABLE  TO  PULSE TORQUING 

Torque  Pulse  Variations - Frequently  the  magnitudes of torque 
pulses  applied  to  the  float differ from  those  inferred by the corresponding 
electrical  impulses at the gyro output. If the  deviations a re  constant,  cali- 
bration of the  strapdown gyro loop will eliminate  some of the errors  gener- 
ated.  Recalling the discussion in Section 2,3, bias and scale  factor  errors 
are  present in both the  binary and ternary  pulse  rebalanced  sensors. How- 
ever,  removing  errors of this  kind from  the  ternary gyro generally re -  
quires two scale  factor  corrections;  the  correction  used at a particular 
time depends on the sign of the input angular rate,  This  represents an un- 

wanted  complication in processing  the gyro output. When the rebalance 
electronics  drift,  causing  uncompensated  variations in torque  pulse  weights, 
new values of bias  and  scale  factor  errors  result in the binary gyro. The 
bias  error is caused by the  fact that torque  pulses are always  being  gener- 
ated in the  binary  rebalance loop; it is independent of the  angular motion 
environment. Only scale  factor  errors  are  generated  in  the  ternary loop 
when the  rebalance  electronics  drift.  Consequently, if the input angular 
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rates are small the ternary gyro will be less sensitive  to unknown varia- 

tions in torque  pulse  weights. 

Quantization - The  output of each  pulse  rebalanced  strapdown 
gyro is a series of digital  pulses  representing  incremental  rotations about 
the input axis. This  form is not well suited  for  drift-free  calculation of 
the direction  cosine  matrix  because  information is lost  regarding the order 
in which rotations take place about the  system  axes.  The  commutativity 
e r rors  which can  result  are  largely  related  to the gyro output quantization 

level  and  the  manner  and  speed with which the  outputs are  processed. 
(Reference 9 provides an approximate  expression  for  commutation e r ro r s  
generated by gyro output  quantization. ) As a general  rule,  fine  quantiza- 
tion is to  be  preferred. 

Delta modulation pulse  torquing  schemes  achieve fine quantization 
by interrogating the nonlinear  logic  element at a high frequency,  permitting 
the  torque  level  to  change sign rapidly. While the size of the output quantum 
in the  time-modulation  technique is also  determined by the interrogation 
frequency,  the  rate at which torquer  current  changes sign is determined 

by the  frequency of the  sawtooth  wave. In gyros  employing  delta modulation 
rebalance  schemes,  quantization is limited by time  constants in the torque 

generation  mechanisms. If the pulses  are of too  short a duration, the tor- 
quer  current will not reach its design  level  before  the  next  potential  switch- 
ing  time  occurs,  Because of eddy current  effects, when the  torquer  lag is 

on the  order of the pulse  period, two consecutive  torque  pulses in the  same 

direction  will not  have the same  time  integral  (effect on ao) as the  sum of 
two separate  pulses  (see  Fig. 5.2-1). Consequently, all current  pulses 
will not have equal weight and an accurate  measure of angular motion  about 
the  gyro input axis cannot be found by counting  output pulses. 
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Figure 5 2 -1 Torque  Pulse  Variation when the Torquer  Lag 
is a Significant  Fraction of the Pulse Period 

In the  time-modulation  torquing  scheme,  quantization is not tied 
directly  to  torque  pulse width. The current  switching  frequency is strictly 
limited  and  quantization is determined by the  number of points in each 
cycle of the sawtooth at which the  torque can  change sign. In the  absence 
of switching  delays,  infinitesimal  quantization is possible.  The  practical 
limit is imposed by the  ability  to  switch the torque  levels  accurately in 
time. Using this approach,  torquer  time  constant  problems a re  eliminated 
by choosing  the  amplitude of the  added  waveform so that torquer  current 
always reaches  the  desired  level  before  the  next change occurs. 

Information  Rate - The information rate, defined here as the fre- 

quency  with  which new indications of system  angular motion will be avail- 
able to the attitude  transformation  computer, can depend on the  pulse  tor- 
quing technique  chosen.  Typically, a gyro with time-modulation  rebalance 
torquing  can  provide output impulses faster than one using  either of the 
delta modulation approaches.  Each  impulse is interpreted as an increment 
of angular  rotation about the  instrument's input axis. However, as 
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discussed earlier, most of the information  actually  present in the raw output 

of this  rebalance  technique relates to the oscillatory  signal  added  to a. and 
not to  angular motion experienced by the gyro, The information rate of a 
gyro employing  time-modulated  torquing is essentially  limited by the fre- 

quency of the additive  oscillatory signal used in mechanizing this  approach. 
It would then  appear that the information  rate of gyros  using  the  delta 

modulation approach  to  rebalance  torquing is higher than those  employing 
the  time-modulation  technique, when present  interrogation  frequencies  are 
considered. However, the  practical  rate at which angular motion can be 

sensed by this kind of strapdown gyro is usually  limited by lags in the float 

dynamics, not the  sampling  frequency; output pulses which change  sign at 
a rate near that of the interrogation  clock  are  more likely to be caused by 

electrical  noise  than high frequency motion inputs. In summary,  the  use- 
ful  information  rate of a contemporary  floated single-degree-of-freedom 
strapdown gyro generally is limited  not by the pulse  rebalance  technique 
employed but by float  dynamics. 

Unforced Oscillations - All three pulse  torquing  schemes  pro- 
duce  unforced  oscillations in the gyro loop at one time or another. The 
limit  cycle  behavior of a control loop containing a binary  nonlinearity is 
well lmown (Ref. 10). In the  presence of certain  inputs,  the  three  level 
pulse  torqued gyro and the time modulation scheme will also  exhibit  cyclic 

errors .  The unwanted oscillations all result  from the use of torque  pulses 

to  rebalance the gyro. Limit  cycles in pulse  rebalanced  gyros can be mis- 
taken for coning  motion if they occur with proper  phase  and at the  same 
frequency,  (System  attitude drift rates  are  generated in this  manner. ) The 
binary  delta  modulation  scheme is usually thought to be the least  satisfac- 

tory  from this point of view,  However, it can be shown that slight  differ- 
ences between limit  cycle  periods of the different gyros in a strapdown 
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triad will prevent  large  system  coning e r ro r s  (see Ref. 1). Thus, gyros 
with slightly  different  characteristics may be desired if this  form of tor- 
quing is used. 

Gyro Frequency  Response  Characteristics -- Closed loop 
response  to  sinusoidal  inputs is a useful  description of behavior.  Closed 
loop gain and  phase  shift  characteristics are useful  in  determining  strap- 
down system  errors when the gyro loop is assumed  to  be  linear (see 
Chapter 4). Approximate  determination of these  characteristics is dis- 
cussed in the  three  succeeding  chapters.  Torque  loops  employing  binary 
logic  appear  to  be  more  readily  described  in  terms of linear  behavior than 
those  using  ternary  logic,  offering an advantage when analyzing and com- 
pensating  dynamic  system  errors. 

Energy  Dissipation - Temperature  gradients within  the  gyro 
structure are a major  cause of single-degree-of-freedom gyro drift. If 

the  gradients can be held  constant,  proper  testing will  enable  accurate 
compensation of these  effects. While it consumes  less power in most  mo- 
tion  environments,  the  ternary  delta modulation torquing  scheme  does not 
usually  provide a uniform  energy flow into the torquer. To avoid th is  ob- 

vious rause of varying  temperature  gradients,  the  current  source  can be 
switched  into a dummy load when no  torque is called  for. However, i f  the 
same  heat  pattern is to be produced, th i s  requires a dummy winding the 
same  size as the  torquer.  Situations do exist  where the ternary technique 
will provide  essentially  constant  energy flow without the extra winding; for 
example, while operating in the  angular rate environment  generated by a 
limit cycling  spacecraft  attitude  control  system. 
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5,3 COMPARISON OF PULSE  TORQUING  TECHNIQUES 

Binary  Delta Modulated Torquing - The  binary  delta modulation 
rebalance  technique  provides a gyro loop response which is linear because 

of the  limit  cycle  always  present  in this  kind of system (see Chapter 6). 
However,  some  compensation within the gyro loop may be desired  to  im- 
prove its behavior.  Because  torque is always  being  generated,  energy is 
dissipated within this kind of an instrument at a constant rate and no  signi- 
ficant e r ro r s  are caused by variations in temperature  gradients. A high 
rate of power  consumption results, even in the  most benign motion environ- 
ment. A limit  cycle,  from which strapdown  system  attitude drift rates can 
result, is always present  in this instrument.  The output  quantization  level 
of a gyro  using this rebalance  technique is limited by torquer  dynamics  and 
the output resolution is generally  poorer than can be obtained from  sensors 
using  time-modulation  torquing.  Also,  the  instrument is relatively  sensi- 
tive  to  uncompensated  deviations  in the size of rebalance  torque  pulses. 

Binary  delta modulation requires a minimum of electroniG  components,  sug- 

gesting better reliability, 

Ternary Delta Modulated Torquing - Gyros  employing  ternary 

delta modulated torquing can conserve  electrical  energy in a benign envi- 

ronment  such as that encountered  during long space  missions. In addition, 
there is less tendency to  exhibit  cyclic output e r rors ,  Because a null  tor- 
quer  current can be achieved with high accuracy,  they  usually have a lower 
drift rate in the absence of an input  and are  less  sensitive  to  deviations  in 

torque  pulse  size  However, in a variable  environment  unstationary  tem- 
perature  gradients can be generated  inside  the  instrument  unless a dummy 
electrical load is used  to  dissipate  energy when no  torque  pulse is called 
for. If this  additional  device is added to  the  gyro,  the  lower power  consump- 
tion  feature is sacrificed and the weight and size of the instrument  are 
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increased. As with the gyro using  binary  delta  modulated  torquing,  the 
ternary  rebalanced  sensor suffers from an output resolution that is limited 
by torquer  dynamics. A gyro loop using  this  torquing  scheme  exhibits a 
nonlinear  response  to high frequency  inputs (see Chapter 7), casting doubt 
on its value as a strapdown  sensor in vigorous  angular  vibration  environ- 
ments,  The  ternary  gyro  also  displays ambiguous  response  characteris- 
t ics in the high frequency  range. 

Time-Modulated  Torquing - The  output resolution of a gyro em- 
ploying  time-modulated  torquing is essentially independent of torquer dy- 
namics.  Consequently, this  type  of  instrument  provides  finer  quantization 
than is commonly found in other  pulse  rebalanced gyros. An oscillatory 
e r r o r  can  appear in the  gyro output but this  is much smaller than those 
occuring with binary  delta modulation techniques, High power consump- 
tion is characteristic of this rebalance  scheme but temperature  gradients 
within the  device a re  held  constant.  This  type of instrument  exhibits a 
relatively  large  sensitivity  to  variations in torque  pulse weight. Analysis 
indicates that a more  satisfactory  linear  response  can be obtained from 
this type of gyro than is possible  using  simple binary torquing in an uncom- 
pensated loop. Of the  three  techniques  discussed,  time-modulated  torquing 
requires the largest  number of electronic  components. 

Summary - The three  pulse  torquing  techniques  discussed are 
compared in Table 5.3-1, Some representative  values of important  param- 
eters are listed  to  aid in the comparison. None of the  approaches  discussed 
offers a clear advantage in all situations. If constant  energy  dissipation 
over a wide range of inputs  and  linear  response are  required at the outset, 
the  ternary  approach  can  probably be ruled out.  However, when the  angu- 
lar motion environment is quiet  and  reasonably  constant  the  ternary gyro 
has the  advantage of low power consumption and is less  affected by torque 
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pulse  deviations. All three techniques  appear  capable of providing the same 
information rate, but the time-modulation  approach can give better output 
resolution  because it permits output quantization  to  be  specified independent 
of the torquer  design. 

TABLE 5.3-1  

COMPARISON OF PULSE  TORQUE  TECHNIQUES 

R E B A L A N C E   T E C H N I Q U E S  
U N D E S I R A B L E  

F E A T U R E S  
BINARY TERNARY 

MODULATION 
DELTA 

MODULATION 
DELTA 

r 

Output  Quantum 
Level  Limited by 
Torquer Dynamics.  about 20 s?c or more when 

qmax = 1 rad/sec 

MODU IATION 
TIME 

6 8  < 1 spc  for  the 
Hamilton Standard 
RI-1170 under  simi 
lar circumstances. 

X 

x 

C O M M E N T S  

Gyro output quantum, A@, is 
independent of torque  lags when 
the  time  modulation  technique 
i s  employed. 

Ternary  gyro can also  exhibit 
output oscillations.  The  finer 
quantization  available with the 
time modulation schemes 
reduces  the  amplitude of these 
errors. 

See Fig. 7.1-6 for an illustra- 
tion  of the  amplitude  dependent 
response  characteristics of .the 
ternary  gyro. 

This  can  be  avoided  in  the 
ternary  gyro also but at  the  ex- 
pense of significant  increases  in 
torquer  size and  weight. 

rhe  ternary  gyro  also  suffers 
,his  problem if a dummy elec- 
. r i d  load i s  added to give 
stationary  temperature  gradients. 
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6. BINARY PULSE REBALANCE LOOPS 

Certain  system-level  errors  in strapdown inertial  navigators 
depend on the  transmission  characteristics of the  instruments  used  to 
measure  angular and linear motion.  Unfortunately when pulse  rebalanced 
sensors are employed,  simple  exact  mathematical  expressions  for  the gain 
and  phase  lag  introduced by the gyro and accelerometer  loops do not exist; 
the instruments are highly nonlinear in nature.  It is the  purpose of this 

chapter  and  the two which follow to  present  approximate  techniques  for 
predicting  the  transmission  characteristics of pulse  rebalanced  strapdown 
sensors. A separate  aspect of pulse  torqued  gyros and accelerometers -- 
their tendency to  exhibit  self-excited  oscillations -- is closely  related  to 
analysis of their  response  to  inputs, and the two subjects  are  treated 
simultaneously. 

This  chapter  demonstrates  techniques  for  analyzing  inertial  in- 
struments which a re  torqued  using  the  binary  delta modulation technique 
presented in Chapter 5, The discussion  centers on gyroscopes but the 

techniques developed a re  applicable  to a very  broad  range of instruments, 
including accelerometers. 

6.1 ANALYSIS OF THE LIMIT  CYCLING BINARY GYRO 

This  section  discusses  analytic  techniques  for  deriving the closed 
loop transfer  characteristics of the  binary  pulse  torqued loop. Closed loop 
gain characteristics  predicted  analytically  are  displayed  to  illustrate  the 
effects of different  instrument  parameters. 
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6.1..1 Response  to  Sinusoidal  Inputs 

Figure 6.1-1 is a simple  representation of a binary  pulse re- 
balanced  gyro loop. The rotor  and  gimbal are assumed  to behave as a 
single  rigid body for  angular motion  about the gyro output axis and  act as 
a summing point for torques about the output axis. More complex  repre- 
sentations of gyro dynamics have also been treated (see Ref. 2). 

R -3754 

ROTOR & GIMBAL 
DYNAMICS 

TORQUER 
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ZERO  ORDER 
HOLD 

i t g  = TORQUER  CURRENT COMMANDED 

Figure 6.1-1 Binary-Torqued  Gyro Loop With 
Second Order  Gyro  Dynamics 

Limit  Cycle - In the absence of angular rate inputs the gyro loop 
will experience a self-excited  oscillation or limit  cycle. This is a conse- 

quence of the binary  nonlinearity and the fact that the linear elements are 
capable of providing 180 deg. of phase  lag  (see Ref, IO). If the  sampling 
process shown in Fig, 6 , l - 1  is ignored,  the  describing function  condition 

for a loop limit  cycle is 
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NA(A) G (jw,) = -1 (6 , l -1 )  

where N (A) is the  Sinusoidal Input Describing  Function  (gain)  representa- 
tion of the  non-linearity  response  to a sinusoidal input of amplitude A, 
G(juA) is the  transfer function of the open-loop linear  elements,  evaluated 
at the  limit  cycle  frequency, w, rad/sec,  viz: 

A 

(6.1-2) 

where Tf = Io& is the float  time  constant. Appendix E shows that the 
describing function for  the  binary  element  in  Fig. 6.1-1  is given by 

4D NA(A) = - ITA (6,1-3) 

Inserting  Eqs. (6.1-2) and (6.1-3) in Eq. (6.1-1) yields the following  mag- 
nitude  and  angle  conditions  required for a solution: 

magnitude  condition : 

(INAl I G ( j W e l =  ') 
4D 
7TA 
- z Ks Kt 

C 

angle condition : 
(LNA+ L G ( j u A )  = -.> 

lr -1  -1 
2 

" -  tan rfuA -tan 7 w =-lr  
t g  J 

1 (6 , l -4 )  

(6.1-5) 
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Equation  (6.1-5)  can  be  solved for uA, giving 

rad/sec 

Inserting this  result  into Eq.  (6.1-4)  yields 

(6.1-6) 

(6.1-7) 

Note that the  limit  cycle  frequency  depends only on the time  constants of 

the  linear loop components, 

Linearized  Gyro Loop - Consider  the  linear  continuous-torqued 

rebalance loop shown in  Fig. 6 , l - 2 .  The gain K1 has units of milliamp/ 

millivolt and represents  the  operation of linear  conversion of signal  gener- 
ator voltage output to  torque  generator c Jrrent input. As a good approxi- 
mation in this  linear  system,  torquer  dynamics have been omitted. Gi 
denotes the  continuous  output, which is an estimate of the input rate w. 

The  second-order transfer function from w. to i. can  be  written as follows: 
1 

1 1 

R -374 5 

Figure  6,l-2  Representation of a Linear  Gyro Loop 
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where  the  natural  frequency and damping ratio are given as 

C P =  

(6.1-8) 

(6.1-9) 

(6.1-10) 

The limit  cycling,  binary  torqued loop can be approximated by 
the  linear loop in Fig.  6.1-2 if the  equivalent  nonlinearity gain to  signals 
of interest can  be  specified,  assuming once  again that dynamics of the 
sample and hold operations  can be ignored. In the  case of slowly varying 
input signals  (relative to the  limit  cycle  period),  the signal appearing at 
the  input  to  the  nonlinearity can be modeled as a sinusoid (the limit cycle) 
plus a bias  (response  to  the input signal). The gain to the  bias, defined as 
the  ratio of nonlinearity output dc amplitude to  nonlinearity input dc ampli- 
tude  (the  bias, B), has been called the Dual Input Describing  Function, 

NB@, B). 

The calculation of the Dual Input Describing Function for a binary 
nonlinearity (Appendix E )  reveals that 

(6.1-11) 
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In the  limit of small B/A this becomes 

(6.1-12) 

A very  important  result of recent  research in describing function theory 
suggests that "the gain of the nonlinearity to  a small  signal in the  presence 
of other signals is the  same  regardless of the shape of the small  signal," 
(Ref, 10). This  means that the use of N (A, 0)  to  represent the nonlinearity 
gain to  information  passing  through the rebalance loop can be justified on 

the basis of "smallness" as well as "slowness." 

B 

To compute  the parameters of the linearized  binary loop we can 

use  Eqs. (6 , l -9 )  and (6,  1-10), with K1 replaced by NB(A, 0): 

(6,1-13) 

(6 , l -14)  

Neglecting the torquer  lag in the  feedback  path  causes no important e r ro r  
in these  calculations. Note that a very  interesting phenomenon has occurred. 
Both w and < are independent of all of the loop gains (K K D) ! It is 

this very  behavior which is capitalized upon  in the  design of certain  adap- 

tive  control  systems. 

n  sg'  tg' 

The linearization of the  binary gyro loop is a consequence of the 

limit  cycle  usually found in a system of this type, Under certain  circum- 

stances  (to  be  discussed  subsequently) an oscillatory input to the gyro loop 

can  cause  the  limit  cycle  to  vanish. In that case, the closed loop charac- 

teristics of the binary  torqued  instrument  differ  significantly  from  those 
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presented above. When the  limit  cycle is not "quenched, " Eqs. (6.1-13) 
and (6.1-14) can be used  to  study  the  effect of varying  gyro  parameters. 
Figure 6.1-3 illustrates  the  behavior of the  closed loop gain as the  float 
time  constant is varied. A similar  comparison  could  be  made of phase 
shift. It will be shown later that compensation can be  employed in the gyro 
loop to  reduce  peaking in the gain response. 

1 o c  
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Figure 6.1-3 Closed Loop Frequency  Response as 
a Function of Float  Time  Constant 

Effects of Sampling  in  the  Gyro Loop - In the  above discussion 
the  effect of sampling in the loop has been ignored  for the sake of simplicity. 
The  sample  and hold operation  contributes an additional  frequency-sensitive 
phase  lag  to the open loop dynamics.  This can cause  the  limit  cycle fre- 
quency and amplitude to  be  different  from  those  experienced in a continu- 
ous  binary gyro loop. Consequently, there may be  different  value  for the 
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nonlinearity gain to  the  signal and  the  closed loop frequency  response is 
not the same. While an  exact  analysis of the effects of sampling is pos- 
sible, the one discussed here will be  approximate, in the interest of sim- 
plicityo 

The sample and hold transfer function is 

vT sin -z 
vT 

-j V T / ~  S(jv) = e (6.1-15) 

where  T is the  sampler  period in seconds, If vT/2 << 1 because  the 
sampler  frequency is much higher than other  frequencies  encountered 
in the  loop,  the transfer function is approximately 

(6.1-16) 

The  equivalent  closed loop natural  frequency and  damping ratio given in 

Eqs. (6.1-14) and (6.1-13) can be derived  including the effect of the sampler 
lag  expressed by Eq, (6.1-16). The resulting  relations  are given below. 

(6.1-17) 

(6.1-18) 

6-8 



The  effect of a finite  sampling  rate on the  closed loop gain is illustrated in 
Fig. 6,l-4  where  response  curves are shown for a very high sampling fre- 
quency and a 10 kHz rate. It can be seen that sampling  in  the gyro loop tends 
to  reduce  the  useful bandwidth of the  instrument. 

lo? 

R-3758 

0.1 
10 100  1000 

INPUT FREQUENCY (Hz) 

Figure  6.1-4  Closed Loop Frequency  Response 
Showing the  Effect of Sampling 

6.1.2  Limit  Cvcle Quenching: 

It  can be seen  from the magnitude  condition for the existance of 
a limit  cycle, Eq. (6.1-4),  that an unforced  oscillation cannot exist in the 
binary loop if 
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(6.1-19) 

The describing function  gain, NAY of the  binary  nonlinearity is 
in general dependent on the  limit  cycle  and input amplitudes A and B. 

From the theory of Two-Sinusoid-Input Describing  Functions  (TSIDF's) 

(see Ref. lo) ,  

NA(A, B) = - 8D 2 E(:) 
T A  

(6.1-20) 

where E (B/A) is the  complete  elliptic  integral of the first kind and it is 

assumed that A/B > 1. Maximizing N over all values of A yields NA 
as a function of B: 

A max 

N - - 0.855D. 
" 

B '  A - 0.909 (6.1-21) 

Note that the peak gain to  the  limit  cycle  decreases as the input amplitude, 

B, is made larger. Using Eqs. (6.1-21)? the  amplitude, B of the  input 

sinusoid above which the  inequality in Eq. (6.1-19) always holds  (the  limit 

cycle is "quenched") is found: 

q' 

B = 0.855D IG( juA) l  
q 

(6.1-22) 

The  nonlinearity  describing function gain to the signal when the  limit  cycle 

is just quenched is found by substituting B/A = 0.909 into the relation  for 

NB(A, B )  given in Ref. 10 and  employing  Eq, (6.1-22): 
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(6.1-23) 

The  binary  torqued  gyro loop can  be viewed as the  system shown in Fig. 
6.1- 5 when the  limit  cycle is at the  point of being  quenched. 

Figure 6.1-5 Binary Loop Viewed at the  Point  where 
the Signal  Quenches  the  Limit  Cycle 

In order  to  determine  the  values of input frequency  and  ampli- 
tude which cause  the  limit  cycle  to be quenched,  the transfer function  be- 
tween  input angular rate oi and float  angle cyo is written in terms of the 
transfer function for the various  blocks in Fig. 6.1-5. 

Mi 
-(SI -(SI 

0 1 Mnet 

a! 
0 

OL 

“s) = w. a! M 
1 1 + -(s) 0 9 ( s )  NB 

Mnet  tg 

(6.1-24) 
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From Eqs.  (6.1-22),  (6.1-23) and (6.1-24), the solution for the input am- 
plitude  required  to quench the limit cycle can be written: 

cy M 1 + -(s) 0 i t9 ( s )  0.778 
Mnet Q I G ( j w d I  

Mi a 
-(SI - ( s )  

0 
w. 
1 Mnet 

0.855D IG(jwi) 

s = j v  

I (6.1-25) 

The  most  convenient way to  display  Eq.  (6.1-25) is a plot of hlquench as a 
function of u. For a particular  set of gyro parameters, a single-valued 

curve  results,  delineating the boundary  between the regions where quench- 

ing  does  and  does  not  occur. Figure 6.1-6 is such a curve,  for the same 

set of parameters  used for the  calculations in Section  6.2. When the limit 
cycle is quenched,  the loop output is a square wave at the input signal fre- 

quency with an  amplitude  equal  to the nonlinearity  drive  level. If, for 

example,  torquer  current is equivalent to  1 rad/sec,  the  fundamental  com- 
ponent of the output has an  amplitude of 4 /n  = 1.276  rad/sec and the gain of 

the loop is 1.276/52. These  relations are illustrated in the  theoretical 

response  curve  in  Fig. 6.2-4, where Cl = 0.1;  the  range of frequencies  for 
which the  limit  cycle is quenched agrees with Fig,  6.1-6  and the loop gain 

in that range is lo  276/0.1 = 12.76, 

6.1.3  Response  to Random Inputs 

While the response of binary  torqued  sensors  to  sinusoidal  inputs 
is of interest, the motion experienced by strapdown  inertial  systems is 
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Figure 6.1-6 Limit  Cycle  Quenching  and  Its  Effect 
on Frequency  Response (Second 
Order  Gyro  Dynamics) 

more  likely  to be random and broad bandwidth in nature. Since the limit 
cycle  usually  present  in the instrument  under  consideration  tends to  linear- 
ize its response  to  inputs, it is reasonable  to  anticipate that an approxi- 
mate  description of the  relations between the  input  spectral  density, output 
spectral  density,  and  co-spectral  density between  input and output can  be 
obtained from the linearized  description  just developed for the gyro loop. 
That is, a second-order  linear  system whose parameters are given by Eq. 
(6.1-13) and (6.1-14) (or  Eqs. (6.1-17) and (6.1-18)) can be assumed  and 

the  usual  techniques of linear analysis  for  random signals can  be  used,  The 
simulation  results  displayed in Section 6,2 tend  to  verify  this  rather 
intuitive  approach. 
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6.2 SIMULATION OF THE BINARY GYRO 

The analyses of Section  6.1  provide  interesting  insights  into  the 

closed loop behavior of the  binary  torqued  gyro.  The  accuracy of these 
predictions  depends on  how well the describing function linearization  char- 

acterizes  the  true  nonlinearity  response  to a signal in the presence of a 
limit  cycle. As a check on this approach,  typical gyro loops  were  analyzed 
by the  methods  discussed in Section 6.1 and then  simulated on a hybrid 
computer t o  verify  the gyro transfer  characteristics  predicted  analytically. 

The important gyro parameters  for this comparison are: 

H = 2 x IO gm-cma/sec = 0.0025 sec 5 
Tf 

1 rad/sec T = 0,0001  sec 
tg  

Figure  6.2-1  displays  simulation  records of the  binary gyro float 
angle  and torquer output in  the  absence of an  input  angular’ rate. A very 

high sampling rate (1 mHz) was used., The  limit  cycle  observed 
(ua 2 320 Hz) was in close  agreement with that predicted  for a continuous 

loop e 

An oscillatory  angular rate with a peak  amplitude of 0.1 rad/sec 
was applied  to  the  gyro loop. Figures 6.2-2 and  6.2-3  display  simulation 

records of gyro input,  float  angle  and torquer output for two values of in- 

put  frequency. It can be seen that for a low frequency input the gyro float 
angle  follows the input very  closely;  despite  the  simultaneous  presence of 

a Limit cycle  oscillation. At a higher input frequency,  however, it is more 
difficult to identify  signal  and  limit  cycle  effects  separately.  The  closed 

loop frequency  response  predicted  analytically  for this  system is seen in 
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Figure 6.2-1 Simulation  Records  for  Limit-Cycling  Binary Gyro 

Figure 6.2-4, together with points  obtained by simulation,  There is a 
good agreement between the two techniques. 

Figure 6.1-6 indicates that, for an input amplitude of 0.1  rad/sec, 
the limit  cycle  seen in this  system is quenched over a range of frequencies 
above 200 Hz. In accordance with the discussion in Section 6.1, the  pre- 
dicted gain of the  closed loop is a constant value of 12.73. Moreover, all 
information  about  the input signal  amplitude  (except that it is large enough 
to  extinguish the limit  cycle) is lost, and the gyro loop ceases  to a function 
as a linear  system.  Limit  cycle  quenching  can  represent a definite 
restriction on the range of the  amplitudes  and  frequencies that can be 

I 
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Figure 6.2-4 Frequency  Response of a Limit  Cycling 
Binary  Gyro:  Comparison of Analytic 
and  Simulation  Results 

accurately  detected by a binary gyro. However,  quenching is not  common 
at frequencies well below that of the  limit  cycle. 

Figure 6.2-5 presents  simulation  records  illustrating  limit 

cycle quenching.  The frequency of the  sinusoidal input was increased 
slowly but the  change is not  perceptible in the figure.  Limit  cycle quench- 
ihg is seen as an abrupt change in loop behavior as reflected in the float 

angle . 
Sampling - Simulations were also conducted for  the  binary  limit 

cycling gyro with significant  sampling  lags.  Figure 6.2-6 shows the 
frequency  response  for a loop with lo4 samples  per second.  It differs 

6- 18 



F loo mSec - R - 7 f f  

"7- 
-" 
0.1 rad/sec 

t+ 
(a) Input Angular Rate, ai 

t" quenching " 
1 

1 mrad 

t+ 
(b)  Float Angle, a. 

Figure  6.2-5  Binary Gyro  Simulation  Record 
Showing Limit  Cycle Quenching 

noticeably  from that shown  in Fig.  6.2-4.  The  solid  line  indicates the 

response computed using  describing function theory;  points obtained by 
simulation are  also shown. Good agreement between analysis and simu- 
lation is indicated. 

Random Input Response - A random  (broad bandwidth) signal 
was used  to  excite  the  simulated  binary  rebalanced gyro and the spectral 
density of the output was measured at various  frequencies, The gain to 
sinusoidal  inputs  that is predicted  from  the  linearized gyro loop model 
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Figure 6.2-6 Frequency  Response of a Limit  Cycling 
Binary  Gyro:  Comparison of Analytic 
and  Simulation  Results 

developed in Section 6 . 1 , l  was used  to  anticipate the gain of the sensor  to 
random  inputs -- expressed as the  square  root of the  ratio of power 
spectral  densities.  Figure 6.2-7 illustrates the root-spectral-density 

ratios  predicted and those  measured,  for  very high sampling rates. Good 

agreement was obtained for  frequencies up to that at which the response 
peaks (the linearized loop natural  frequency).  The higher-than-expected 
output densities at high frequencies are probably due in part  to  the  pres- 

ence of harmonics of the  lower  frequency  outputs. 

No simulation  results are available  regarding the cross  spectral 
densities between sensor input and output because  appropriate  signal anal- 
ysis equipment was not  available. 
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Figure 6.2- 7 Random Input Response of a Limit 
Cycling  Binary  Gyro:  Comparison 
of Analytic and Simulation  Results 

6.3 COMPENSATION  FOR  THE  LIMIT  CYCLING  BINARY  GYRO 

Introduction - The  binary gyro loop limit  cycles  whether or not 
a rate signal is present at the  input  (unless  the  signal is of high enough 
amplitude or suitably  shaped  to quench the limit  cycle). As a consequence 
of the limit  cycling  property,  the  closed loop frequency  response  to an in- 
put- signal is largely  determined by float and torquer  time  constants and 

not by easily  manipulated  electrical  gains  (see  Section 6.1.1). Specifically, 
if the loop is linearized  using  describing function techniques, a response 

6-21 



characteristic  approximately that of a second  order  system  can  result with 

natural  frequency  and  damping  ratio given by Eqs. (6.1-13) and (6.1-14). 
These  frequency  response  characteristics  cannot be changed without mak- 

ing  hardware  modifications to  change T~ and 7 In general, T is made 
as small as possible in order  to  permit high sampling rates. Also the 
float  time  constant is related  to gyro noise  effects  through  the  damping 
coefficient,  C . Raising the damping  reduces gyro resolution  and  increases 
the effect of electrical  noise in the pickoff. In addition,  no  reasonable 
choice of the time  constants can  make  the  damping  ratio  greater  than 1/2. 
Thus,  the  frequency  response is forced  to  have a peak near  the  natural 
frequency.  Clearly,  some  frequency-sensitive  compensation may be de- 

sired to  remove this peak and, more  generally,  to  permit  control of the 

frequency  response  characteristics without changing T and T 

tg' t g  

f t go 

Analysis - It is useful  to  return  momentarily  to  the Two Sinusoid 
Input Describing Function  (TSIDF) used in Section 6.1.2, This  representa- 
tion of the  nonlinearity is derived  for the case  where two ginusoids, at fre- 
quencies which are not harmonically  related,  appear at the input to the non- 
linearity.  The  gains  to  each  sinusoid are computed separately. When the 
amplitude of the input sinusoid  (here B, representing  the gyro input) is 

much smaller than that of the limit  cycle (A), the  same  describing  func- 

tion  gains  developed  in Section 6.1 and Appendix E using Dual Input Des- 

cribing Function theory  result,  namely: 

(6 .3-1)  

Erro r s  in approximations are less than 10% for B/A < 0.6 (Ref. 2). This 
form of the  describing function is useful in the  subsequent  analysis  since 
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it does not depend on the  existance of a large  difference in input frequen- 
cies, as the Dual Input Describing Function  does.  The  definition of the 
limit cycle  requires  that, at the limit cycle  frequency, uR, 
- 

G @ d N A  = 1 /-180' (6,3-2) 

The  limit  cycle  amplitude A and frequency uA adapt  to  maintain  this  equal- 
ity  regardless of the  compensation  introduced.  From  Eqs. (6.3-1), it can 
be seen  that 

NA 2NB B << A (6.3-3) 

Substituting for NA in Eq, (6.3-2) yields 

G (jus) NB = / -180' (6.3-4) 

Here, G(jwk) NB is the expression for the complex open loop gain as seen 
by the signal  sinusoid. We conclude  that, due to  the  adaptive  properties of 
the  limit  cycle  amplitude and frequency,  the open loop gain and phase shift 

as seen by the  signal  sinusoid will always be 1/2  /-180' at wR. 

The linear  analysis  technique  used  to  investigate  in-loop  com- 
pensation of binary  pulse  torqued gyros makes  use of the  rectangular gain- 
phase  plot  (Nichols chart).,  The open loop gain and phase  characteristics 
are plotted as a function of frequency. On the  same  plot, lines of constant 
M (closed loop amplitude  ratio) are constructed. The closed loop ampli- 
tude ratio  for any sinusoidal input is the  value of M intersected by the open 
loop gain-phase  curve at the  same  frequency.  The M = 1 line  represents 
the desired unity closed loop gain. Figure 6.3-1 shows  the M = 1 line and 
the open loop gain-phase  curve of the uncompensated gyro loop with the 

following parameters: 
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Figure 6.3-1 Open Loop Gain-Phase  Plot for 
Uncompensated Binary  Gyro 

T = 10 sec -4 
tg  Tf = 2,5 x 10 sec -3 

Note that the gain-phase  curve  cuts  through high closed loop gain lines at 
frequencies  lower  than w producing a peaked  frequency  response. 

A' 

In order  to obtain  unity  closed loop gain at all frequencies below 
the  limit  cycle, we must  make gain and phase  changes  to the open loop 
which cause the compensated  gain-phase  curve to  coincide  with the M = 1 
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line. A s  disc.ussed earlier, the  complex open loop gain must  always  be 
1/2 / -180' at the  limit  cycle  frequency, ua; that is, the  gain-phase  curve 
always  crosses  the -180' phase  shift lint with a gain of 1/2 at uR whether 
or  not  compensation is used. It can  be  seen  from  Fig. 6.3-1 that  the 
M = 1 line  also  intersects  the -180' line at 112. Three sets of linear 
dynamic  compensation  schemes which were tried are listed  in  Table 6.3-1. 
In each  case  the  compensation is assumed  to be  placed in the  forward  sig- 
nal path between the signal generator and the  nonlinearity. The closed loop 
gains  for gyros employing  the  three  compensation  schemes are shown  in 
Fig.  6.3-2, with parameters chosen to give the  best loop behavior in terms 
of a flat response in the low frequency  range,  The  damped  second-order 
plus  lag  compensation  reduces the response  peak  somewhat, but at the 
expense of good  low frequency  behavior. It also  lowered  the  limit  cycle 
frequency in the case  studied  from 318 Hz to 216Hz; this  has  the  effect of 
increasing the limit cycle  amplitude. The lead-lag-lag-lead  compensation 
also altered low frequency  behavior, but by properly  selecting T~ the  limit 
cycle  behavior of the uncompensated loop was maintained. In terms of 
increasing the region of  good (near  unity)  response  the  lead-lag  compensa- 
tion  appears  superior, even though the  response  peak is not reduced  much. 

Integral-bypass  compensation was also  investigated. The moti- 
vation for  using this form of compensation is to  reduce  the  average low- 
frequency  float  angle  (taken  over one or more  limit  cycle  periods).  Speci- 
fically, it is desired  to  use  compensation which approximates a pure  inte- 
grator at low frequencies,  thus giving the open loop a double integration 
characteristic  for  constant  inputs. When the  additional  integration is 
inserted in the loop, the  average  float  angle is zero  for a constant input. 
This  compensation  also  reduces  the  float  angles  caused by low frequency 
inputs . 
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Figure 6.3-2 Closed Loop Gain for  Limit  Cycling  Binary 
Gyro:  Effect of Loop Compensation 
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Integral-bypass compensation has the transfer function 

s + K  
S 

At low frequencies the transfer function is approximately K/s, while at 
high frequencies  the  compensation has unity gain, no  phase shift and does 

not  influence  the loop response. It was found that values of K as high as 
10 have little effect on the limit cycle  frequency o r  the closed loop response 

near w . For values of K s 10, integral  bypass  compensation  reduces  the 

average  float hangoff from low frequency  inpuk  and  leaves the closed loop 

response  essentially unchanged. 

R 

Conclusions - The  value of compensation in the  limit  cycling 

binary gyro loop has been  studied  analytically. Two forms of compensa- 

tion which reduced  the  peak  closed loop gain gave poor  behavior at low 
frequencies. A third form of compensation,  introducing lead into  the gyro 
loop, increased the bandwidth of the gyro loop. Zntegral compensation  was 

investigated as a means  for  stiffening the response of the gyro float  to 

low frequency  inputs. 

6.4 SUMMARY 

An approximate  analytic  technique,  based on describing function 

theory,  was  developed  for  establishing the closed-loop transfer charac- 

teristics of binary  torqued  inertial  sensors,  The loop behavior  predicted 

by analysis was compared with that found by simulation.  The two were 

seen  to  be  in  close  agreement.  The  approximate  linear  behavior of binary 

torqued  instruments is seen  to  be a consequence of the limit  cycle  usually 

present in these devices. It was  also  demonstrated that the  conditions 
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under which a limit cycle will not be present can be predicted by analysis. 

The gain of the  uncompensated  binary  loop  to  sinusoidal  inputs was found 
to peak below the  limit  cycle  frequency.  Several in-loop  compensation 

techniques  were  briefly  explored, in an  attempt  to  improve  the gain 

response. 
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7. TERNARY  PULSE  REBALANCE  LOOPS 

In Chapter 6 describing  function  analysis  was shown to  be of con- 

siderable  value  for  treating  sensors  using  binary  delta  modulation  tor- 

quing. Similar  techniques are applied below to  the  ternary-torqued gyro of 

Fig. 7. 1-lo Though the approach is basically  the  same,  the  effort involved 

is greater. Again, in order  to  simplify  the  problem the sampling  nature of 

the  pulsed gyro loop is sometimes  ignored. 

R-ldZ3 

ROTOR & GIMBAL 
DY NAMlCS 

TORQUER ZERO ORDER 
DYNAMICS HOLD 

Figure 7.1-1 Ternary-Torqued  Gyro Loop 

'7.1 ANALYSIS OF THE  TERNARY GYRO 

7 , l .  1 Response  to  Sinusoidal  Inputs 

As in Chapter 6, we desire to  make  approximations which will 

permit  application of linear  analysis  techniques  for  determining the closed 

loop response  to  sinusoidal  inputs,  modeling the loop as shown in Fig. 7.1-2. 
With the  binary gyro, the presence of a limit  cycle  allows us  to  approxi- 

mate  the  describing function gain by a quantity  which  depends only on the 
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Figure 7.1-2 Linearized  Ternary Gyro Loop 

limit  cycle  amplitude.  Unfortunately,  the  ternary  gyro  does  not  exhibit a 
clearly  defined  limit  cycle and the  describing function gain of the  three- 

level  nonlinearity  must  be  treated as a function of the amplitude of the  sig- 

nal  entering it. Also,  because  the float provides  frequency-dependent 

attenuation,  the  amplitude of a sinusoid  entering the nonlinearity is a func- 
tion of both the magnitude and frequency of the gyro loop input.  Conse- 

quently, a different  size  sinusoid  appears at the input of the  nonlinearity 

for  each  frequency and amplitude  combination  applied at the loop input. For 

each  input  combination  explored in the course of a frequency  response anal- 
ysis, a different  nonlinearity  equivalent gain must be calculated and a 
separate  determineation of system output amplitude  made -- to obtain one 

point on the  closed loop gain curve. 

Describing  Function  Analysis - lf a sinusoidal  input angular rate, 
ai = W sin vt, is applied to  the loop shown in Fig. 7,1-2 and the  resulting 

float  angle, ao, is a sinusoid of the  form 

= A.sin (vt + Q) 
0 

then  the  effect of the  nonlinearity on the  gyro  response  can  be  approximated 

by a simple  linear gain which causes no phase shift, The  assumption con- 

cerning the float  angle is valid if there is sufficient low pass  filtering  in 
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the  system  such that the signal at the input to the nonlinearity is basically 
sinusoidal.  The  describing function is derived by calculating  the  Fourier 
series of the output waveform when the input (float  angle) takes the form 
prescribed  above;  the  magnitude of the first harmonic  term of the 
output  divided by the magnitude of the  input  sinusoid is the desired  describ- 
ing function. 

From  Fig. 7.1-2 the magnitude of the transfer  characteristic 
from the input q to  the float  angle ao, at a particular  frequency v ,  is 
given by 

L1 
1 

1 + 2L1L2NA C O S  Q+ 

(7.1-1) 

where 

71 (D = " - tan ( T ~ v )  - tan (T v )  - tan -1 - 1  
2 te; 

and NAis the Sinusoidal Input Describing Function of the ternary  nonlinearity. 
It is assumed in Fig. 7.1-2 that the  sampling  frequency is high compared  to 
all frequencies of interest.  Thus the sampler and zero  order hold are 
approximated by the transfer function 1/(Ts/2 + 1). Equation (7.1-1) can be 

rewritten as 

+ 2L L N cos + L1L2NA 1 2 A  ( ) 2 '  = WL1 (7.1-2) 
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where W and A are the peak  values of ai and ao, respectively.  Squaring 
both sides of this  equation and solving  for ANA gives 

A COS UJ 

ANA - "" L1L2 LlL2 
- f 2- ]L;w" - A2 sin2 q ' (7.1-3) 

The  nonlinearity gain as given by the sinusoidal input describing function is 

(Ref. 10) 

NA = o  A <  6 

This can be written in an alternate  form as - 
ANA = 0 ; A < b  

(7.1-4) 

(7. I - 5 j  

Thus we have two relations  for  the  quantity ANA (Eqs. (7.1-3) and (7.1-5))" 

one embodying the input  magnitude W and linear  characteristics in the gyro 
loop, the other  representing  the  nonlinearity in the system. 

Graphical  Technique - The  graphical  technique  for  obtaining the 

frequency  response of the ternary gyro can be summarized as follows. An 
appropriate input amplitude is chosen and held  constant  during the calcula- 
tions. An initial input frequency, v, is selected and the  right  side of 
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Eq. (7.1-3) is plotted. An elliptical figure results  from this operation. 

Another value  for v is selected and another  ellipse is plotted.  This  process 
is continued until a family of ellipses is generated as shown in  Fig. 7.1-3. 
If Eq. (7.1-5) is plotted on the same  coordinates,  Fig. 7.1-4 results. 
Intersections between the sinusoidal input describing function gain curve 
and individual ellipses  determine the magnitude of the float  angle and the 

value of the sinusoidal  input  describing function  gain at the  frequency at 
which the ellipse was generated. 

From  Figo 7.1-2 the gyro  transfer  characteristics  from input to 
output are 

where all frequencies  other  than that of the input  have been neglected.  The 
nonlinearity gain NA has been  determined  for  various  values of frequency, 
u ,  from  the  graphical  intersections.  Combining this data with Eq. (7.1-6) 
gives the transfer  characteristics (both magnitude and phase) of the ternary 
gyro.  The  float  angle  response can be obtained in a similar  manner,  to aid 

in computing  cross-coupling errors .  

Figure 7.1-5 illustrates a loop gain curve  drawn  from  the inter- 
section  points  determined in Fig. 7 , l - 4 .  The  peaked portion of the  closed 
loop response  curve  exhibits a "jump resonance"  characteristic  similar  to 
that given by a softening  spring.  The  effect of deadzone on the  closed 
loop gain is seen as an  abrupt  drop  to  zero at the  frequency vc. If there was  
no  deadzone, the response gain would fall off gradually with increasing 
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A 

Figure 7.1-3 Family of Ellipses from Linear Part 
of the Ternary  Gyro Loop 

A 

Figure 7.1-4 Combination of Family of Ellipses and Ternary 
Sinusoidal Input Describing Function 
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Figure 7 , l - 5  Ternary  Gyro  Closed Loop  Gain 

frequency.  However,  the  deadzone  causes the relay  to block all signals 
whose amplitude at the  nonlinearity  input is less than 6. A s  frequency 
increases,  the  float gain decreases  until, at frequency vc, the  signal 
at the  nonlinearity input is less than 6. Then the  output, and consequently 
the loop gain,  drops  abruptly  to  zero. Deadzone also  causes  the  overhang- 
ing  nature of the  response  curve. At high input frequencies,  attenuation by 

float  dynamics  prevents  the input to  the  nonlinearity  from  exceeding 6. As 

frequency is decreased  the  float  angle  eventually  becomes  larger  than the 

deadzone,  providing a loop output and generating  signals at all points  in  the 
loop. This  occurs at a frequency  different  from vc because  the gyro is 
essentially an open loop system  until  an output appears at the  nonlinearity. 

Effect of Input Amplitude - Because  the gain of the ternary non- 
linearity  depends on the amplitude of its input, the ternary gyro loop exhibits 

7-7 



nonlinear gain characteristics. When plotted  for  different  magnitudes 
of the input sinusoid, the frequency  response  curves  have  various  shapes 
(see Fig,  7,l-6). If the input amplitude is small enough (0.01 rad/sec in 

the  figure) the closed loop response for the gyro has no  peak. As the  size 
of the input increases,  the  jump  resonance  characteristics and dual gain 

cutoffs  discussed above become  more pronounced., A look at Fig. 7.1-4 
provides an explanation.  The  ellipsoidal  curves  obtained  from  linear  anal- 
ysis  are changing size and rotating, As frequency  increases, the length of 
the major  axis first increases,  then  declines. However, rotation of the 

major axis is monotonic. For the smallest input  amplitude  plotted in Fig. 

7.1-6 no appreciable  rotation of the  ellipses  takes  place  before the loop out- 

put drops  to  zero. When the gyro input amplitude is raised to  0.03rad/sec 
the  ellipses  rotate and the  intersection  points  occur at higher  valuesof AN 
giving a peaked loop response. When the  largest input is analyzed,  the 
ellipses not only rotate but also  become long enough to  provide  several  in- 

tersection  points at some  frequencies; a jump  resonance  characteristic 
results. The  fact that ternary  gyros have a gain which depends on the input 

amplitude is a serious  disadvantage  for this type of instrument,, If it is 

necessary  to  accurately  measure high frequency  angular  vibrations, the 

ternary  pulse  rebalanced gyro does not appear  satisfactory. 

A' 

Computer  Technique - The above graphical  procedure  for  generat- 
ing the frequency  response  curve is tedious and time-consuming  because it 
requires  carefully  plotting a very  large  family of ellipses  to  ensure  accurate 
results. A technique which involves  solution of the same set of simultaneous 
equations by a digital  computer can be devised., Examining  Eqs.  (7.1-3) and 
(7,l-5) we see that they are two different  expressions  for  the  same  quantity. 

For a given frequency of the input we can equate  the  right  side of both equa- 
tions,  thus  eliminating  the  describing function  gain, N A' 
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Figure  7.1-6  Effect of Input Amplitude on Closed Loop Gain 
of a Representative  Ternary  Gyro Loop 

If this equation is expanded to eliminate  the  radicals  the  result is an eighth 
order polynomial  in  the  float  angle  magnitude, A, 

8 6 4 2 blA +b2A + b  A + b A  + b  = 0 3 4 5 (7,1-8) 

from which the  roots can be  numerically  extracted  using a digital  computer. 
Since  Eq.  (7.1-8) has only even powers of A, half of the  roots will have 
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negative real parts. But A must be real, positive, and greater than 
the nonlinearity  threshold, 6. Physically these requirements  can  be 
interpreted by referring  to  Fig. 7.1-1.  The  variable A cannot be 
complex,  since it is the magnitude of the  float  angle; and, in addition, 
i f  the float  angle is less than the nonlinearity  threshold, 6, the relay 

will not  close and the system output will be zero.  Imposing  these 
two conditions on the  roots of Eq. (7.1-8) gives a maximum of four 
possible  values for A. These  roots shall be referred  to as "valid 
values" of A. 

The  valid  values of A correspond  to  intersections of the  curves 

in Fig. 7.1-4. The  main  advantage of the  analytic method is that the prob- 
lem  can now be solved by computer and many solutions can be generated in 

a much shorter  time than with the  graphical  technique. A digital corxtputer 

program was written  to  make  these  calculations and generate  plots of the 

ternary gyro frequency  response  curves.  (Reference 3 contains a set of 
response  curves  for the Honeywell 334A gyro  generated by this program). 

Some very  interesting but unexpected behavior was uncovered  through  the 
use of this program; the appearance of so-called "frequency islands" is 

discussed  presently,  This phenomenon had not  been revealed  using the 

graphical  technique. 

Frequency  Islands - in addition to jump resonance,  another 

interesting  characteristic of the ternary  gyro's  response  to  sinusoidal 

inputs has been predicted  using  the  computer  program  described above. 
It has also been observed on an analog  simulation  (see Section 7.2). This 
phenomenon is referred  to as a "frequency  island" in the  ensuing 

discussion. 
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A single  frequency  island,  labeled  "curve Z", is illustrated  in 
the magnitude transfer  characteristic shown in Fig. 7.1-7. In normal 
practice, a ternary gyro frequency  response  curve is obtained by keeping 
the input amplitude  constant and increasing  the input frequency, while 
measuring or calculating  the  system output  magnitude and phase. When 
this  procedure is followed the  frequency  island is not observed. However, 
it can be observed by holding the input frequency  constant and varying  the 
input amplitude. For example, let the input frequency be fixed at f2 and 
increase  the input amplitude  until  the  float  angle  exceeds 6 and an output is 
observed. If the  input  amplitude is subsequently  decreased, the output does 
not  drop  to  zero and the  system  continues  to  respond  to  the input. If the  in- 
put amplitude is decreased  until it is equal  to 0.01 rad/sec, an output will 

still be observed. Now the system is operating on the frequency  island 
illustrated by curve 2 in Fig. 7.1-7. The  frequency  can now be varied  over 
a narrow  range and the response will be seen  to follow curve 2. 

INPUT FREQUENCY (Hz) 

Figure 7.1-7 Ternary Gyro Response With Frequency  Island 
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It appears that a frequency  island will exist  under  the following 
circumstances:  Jump  resonance  can  occur in the loop sinusoidal  response 
for  some  amplitude of input; the input  magnitude  under  consideration is too 
small  to  produce  jump  resonance.  Figure 7.1-8 illustrates how the fre- 

quency island  develops as input amplitude is decreased.  The  exact  input 
conditions at which the "main body" of the response  connects with the fre- 
quency island have not been analytically  predicted, but can be obtained by 

trial and er ror  methods. 

Figure 7.1-8 Ternary  Gyro  Transfer  Characteristics Showing 
Development of Frequency  Islands 

A plot of output transfer  characteristics  versus input  amplitude 

for  constant  frequency is shown in Fig, 7.1-9, The  region  in which a 
frequency  island is observed is between  input amplitudes WA and WB. If 
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Figure 7.1-9 Gain of Ternary Gyro as a Function 
of Input Amplitude 

input  amplitude is increased  from  zero, no response wil l  be seen  until the 
magnitude of the input rate is equal  to WBo Once an output is observed we 
can  then decrease  the input  magnitude until it reaches WA. At WA the  out- 
put drops  to  zero. It can be seen  from the figure that as the size of the 
input is lowered  the loop gain increases.  This happens  because  the output 
amplitude  remains  approximately  constant  for a wide range of inputs. 

7.1.2 ResDonse to  Random InDuts 

In the  previous  section  methods  were  presented  to  obtain  the 
sinusoidal  frequency  response of the  ternary gyro. In practical  appli- 
cations  the  environment  to which the ternary gyro is subjected is not 
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generally  composed of pure  sinusoids; it tends  to  be  more  random in 
nature.  The  response of the ternary gyro to a random input rate cannot 
necessarily be implied  from the results of the previous  section,  since the 
derivation of the  sinusoidal input describing function assumed a different 
form of input. In this  section  the  analysis is extended to handle the case 
where the input rate is random. A Random Input Describing  Function 
(RIDF), as derived  in Ref. 10, is used  to  linearize  the  ternary  nonlinearity 
and the analysis is carried out in a manner  similar  to the sinusoidal  anal- 
ysis.  The  transfer  characteristics of the  nonlinearity are modeled as a 
constant gain (i.e.,  the RIDF) for a particular  input. The spectral  density 
characteristics of the output a re  then determined by applying  standard sta- 
tistical  analysis  techniques  for  linear  systems. 

* 

Describing Function Analysis ~ . " - A Random Input Describing 

Function  can be used  to  characterize the gain of the  nonlinearity  to a ran- 
dom signal if certain  assumptions  are valid  for  the  system.  The  basic 

assumption  used  in  deriving this describing function is that the signal at the 
input to  the  nonlinearity is unbiased and has a gaussian  distribution.  The 
procedure is to  calculate a linear gain such that the mean  square  difference 

between the  true  nonlinearity output and product of the input with the gainis 

minimized.  The  RIDF so  derived  depends on the standard  deviation of the 

input as well as the  form of the  nonlinearity. 

For the ternary gyro, if  we assume that the  float  angle, ao, is a 
gaussian  signal,  the  describing function for the nonlinearity is (Ref. 10) 

* 
However,  some  success has been  obtained in using  the  sinusoidal 

describing function to  predict  ternary gyro response  to  random 
inputs -- under  special  circumstances.  This is demonstrated in 
Section 7.2 
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(7.1-9) 

where 0% is the  standard  deviation of the  float  angle. It is reasonable  to 
make  the  assumption of a gaussian input since in the  ternary gyro there is 
sufficient low pass  filtering between the output of the  nonlinearity and the 
float  angle  to  insure  that  the  float  angle is gaussian. 

Refer to  the block diagram of a ternary gyro loop shown in  Fig. 
7.1-2. If the input has a broad bandwidth compared  to  that of the gyro loop 
it can be viewed as white noise, i. e. , the input power spectral  density can 
be treated as a constant. 

Q (v) = w rad/sec w. w. 
1 1  

(7.1-  10) 

Including the gain K in  Fig.  7.1-2 as part of the deadzone 
definition, the transfer function from the gyro input to  the  nonlinearity 
input, a0, is 

sg 

(7.1-11) 

where NR is a gain representing  the  response of the  nonlinearity to the  ran- 
dom  signal at its input (a random input describing function). The  power 
spectral  density of the  nonlinearity input is 
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and the mean  square  value of a is, from  linear  theory 
0 

Substituting the assumed input spectral  density into Eq, (7.1-13) gives 

U 
2 -  - 5 G ( jv)  G ( - jv )  dv 

aO 27rj - jcn ob ob 

which can be written as 

(7,l-14) 

(7,l-15) 

This  integral  has a special  form which  can be analytically  evaluated. Using 

the formulas in Table  7.3-1 of Ref. 10,  Eq. (7,l-15)  becomes 

(7,l-16) 
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I 

where 

w H ~ K  

2c Ktg 
K =  sg 

r 2  T ~ K  K K K  
a =  1 tg 4c sg tg + sg  C tg [(/itg+ $Y-rtgT) &(f*tg)+~f~tg)] 

and 

Solving Eq.  (7.1-16) for NR gives 

2 K a -a b2 
Qo 1 

NR 
- - 

2a 2 bl *2 2a bl j j  010 (7.1-17) 

O10 

Equations  (7.1-9) and (7,l-17)  are a pair of simultaneous  rela- 
tions in N and ua0. R One is based on analysis of the  closed loop system 
in  which the nonlinearity is modeled as a constant gain and the  other is the 
random input describing function. Each of these equations can be plotted. 
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Intersections between the  resultant  curves will define  values  for NR and 

OQO 
which are solutions  to the two equations.  This  technique is analogous 

to  the  graphical  technique  for  obtaining the sinusoidal  response. But here 
we are not  required  to  plot a large  family of curves  to  insure  accurate re- 
sults  for a single  representative input. 

As an alternate  approach we can use a digital computer program 

to  numerically  solve  the two equations.  Substituting  Eq. (7.1-9) into 
Eq,  (7.1-16) and rearranging  gives an equation  describing ucy when a 
solution  occurs : 

0 

u -  
0 

2 -  
a (7.1-18) 

This  nonlinear equation  can be arranged  to f i t  the general  form 

f(UaJ = O 

There  are  several  general  digital  computer 

(7.1-19) 

subroutines which will  solve 
nonlinear  equations of the  form of Eq.  (7.1-19), Once the  standard  deviation 
of the float  angle is determined by solving Eq, (7,1-18),  the  random input 
describing function gain can  be  calculated  from  Eq.  (7.1-9).  This  can be 

used to  determine  the  transfer function between the  input and the  float  angle, 

Eq. (7.l-ll),and the power spectral  density of the  float  angle,  Eq.  (7.1-12). 
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If we assume, as in  the  sinusoidal  case,  that  there is insignifi- 
cant  phase  shifting between the  nonlinearity  input and gyro output and i f  all 
harmonic  terms  created by the  nonlinearity are neglected,  then  the  trans- 
fer function from  input, ai, to output, A, is 

A 

w- N K  1 “(s)  = tg G ( s )  
wi H ob 

(7.1-20) 

for a fixed u as determined  from the solution of Eq. (7.1-18). The cor- 
responding power spectral  density of the output is 

aO 

(7.1-21) 

A digital computer  program was  written  to make  the calculations 
described in th i s  section and plot  the results.  Figure 7.1-10 illustrates 
the output magnitude transfer  characteristics  predicted by the above form 
of analysis.  The  in-phase and quadrature  components of the  transfer 
characteristics are defined by Fig, 7 , l -10  and the resultant  phase  angle, 
cp, plotted  in  Figo 7.1-11, The  phase  angle  also  defines the resultant  co- 
and quad-spectral  density between the  input and output. The output power 
spectral  density is shown in  Fig. 7.1-12, Notice that, as with the sinus- 
oidal  response, the random  response of the ternary gyro depends on the 
size of the input. 

To  date two major  problems  have  prevented  verification of the 
above analysis:  lack of sufficient  instrumentation  for  use  in conjunction 
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Figure 7,l-lO Output Gain Characteristic of the  Ternary  Gyro 
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Figure 7.1-12 Power  Spectral  Density at the Output of the 
Ternary  Gyro: White Noise Input 

with the gyro simulation, and multimoding (see below). The  instrumenta- 
tion  problem can be surmounted by obtaining a sufficiently "white" noise 
source and an accurate low frequency  spectrum  analyzer.  The  multi- 
moding problem is more  difficult  to  overcome. 

Multimoding - Multimoding  in the random  response of a ternary 
gyro has an analogy in jump  resonance in the  sinusoidal  response.  The 
result of jump  resonance is that the output of the ternary loop can have 
more  than one output  magnitude for the same  size input. The  result of 
multimoding is that the output power spectrum can  have more than one shape 

for the same  random input spectrum.  The  difference between these two 
effects is that in the random  response, the output  power spectrum  sponta- 
neously shifts between the various  modes.  The  objective of this section is 
to show analytically why multimoding  occurs. 
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In determining the random  response of the ternary  gyro, it was 
necessary  to  numerically  solve a nonlinear  equation in ow" If the function 
defined as f(ow) in Eq. (7.1-19) is plotted as a function of the  standard 
deviation oob, a curve  such as that shown in Fig. 7.1-13 can result.  Each 

intersection of this curve with the horizontal axis is a solution to Eq. (7.1-18) 
corresponding  to a different  response mode. There is simulation  evidence 
to  suggest that these modes are not necessarily  stable (i. e., if  the standard 
deviation of the  float  angle will stay at a magnitude  corresponding  to a par- 

ticular mode for a finite amount of time,  then it is a stable mode). 

R - I782 

Figure 7.1-13 Nonlinear  Function of the Standard 
Deviation of the Float Angle 

In the random  response of a linear system  there is no  analogy to 

multimoding.  The  fundamental  reason  for  multimoding is that the  effective 
gain of the nonlinearity is not a constant but rather varies with input  con- 

ditions. 

The  result of the  multimoding is that for a given input spectral 
density the gain of the gyro  changes  randomly,  causing the spectral  density 
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at the output to shift between the various stable modes.  Multimoding is 
observed  in the simulation as abrupt  changes in the magnitude of the output 
signal at random  time intervals. Figure 7.1-14 illustrates the time his- 

tory of a ternary  gyro with a broad bandwidth input,  obtained from  the 
simulation.  Examining the float  angle  signal, there appear  to be two dis- 
tinct  modes.  (There is a possibility that the gyro  response between t l  and 

t 2  is a limit  cycle.  However, the nonlinearity  threshold, 6 ,  was selected' 
to be well above the minimum  value that should prevent a limit  cycle. 
Since the response between tl and t 2  in  Fig. 7 1-14 is clearly  different 
from the respopse between t3 and t4, we conclude that the  gyro loop is 

operating in tw o/ distinct  modes. 

The gyro loop simulated  appears  to have at least two stable modes, 
These  time  histories  are  very  similar  to  curves published by Booton (Ref. ll), 
In that reference, the author  was not successful in isolating  the  different 
modes, however the existence of the modes was  the only way he could justify 
his simulation  results. There does  not  appear  to be a simple way to  deter- 
mine the mode in which the system is operating at a given point  in time. 
Therefore the system  response is ambiguous. Figure 7.1-15 illustrates two 
output spectral  densities  predicted  analytically  from  the  same  random  input. 

The  principal  problem  caused by multimoding is that one  value of 
the input can  result  in one of several.  values of output. This is analogous to 
the ambiguities  encountered in jump  resonance  in the sinusoidal  response, 
and the same  objections apply. 

Summary - A method for  obtaining the random  response of a 
ternary  gyro has been presented  in this  section,  although it has not  been 
verified by analog  simulation.  This  approach  involves the use of a random 
input  describing function to  characterize the gain of the ternary  nonlinearity. 
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Figure 7.1-14 Time  History of Ternary  Gyro With a Random 
Input, Illustrating Multimoding 

The  technique  displayed here was chosen  because of its simplicity com- 
pared  to  other  methods, It was also shown that multimoding  causes  am- 

biguities in the  response of the ternary  gyro,  just as jump  resonance  does 

in the sinusoidal  response. 
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7.2 SIMULATION OF THE TERNARY GYRO 

The  analytic  techniques  demonstrated in Section 7.1 provide 
interesting  insights  into  the  closed loop behavior of the  ternary-torqued 
gyro loop. However,  the  accuracy of these  predictions  depends on  how 
faithfully the describing function approximation  characterizes  true non- 
linearity  performance, As a check on the validity of this  approach,  char- 
acteristics of certain  ternary loops were computed and the  results  veri- 
fied using computer  simulation. 

Sinusoidal  Inputs - A set of parameters is chosen to  represent a 
typical  ternary gyro loop with  second order  gimbal  dynamics  (see  Fig.  7.1-1): 
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Wimax 

Tf 

= 1 rad/sec r = 0.00005 sec 

= 0,00125 sec 6 = 4.17 x rad of float  angle 
t g  

H/C = 1 

With the  exception of the  nonlinearity  deadzone 6 ,  these are the  same  values 
as those shown in Fig. 7.1-6. A different  value of deadzone was used  for 
this comparison  to  ensure that no limit  cycle  took  place  in the simulated 

gyro loop. Oscillatory  angular  rate  inputs with a peak  amplitude of 
0.1 rad/sec  were  applied  to the simulated  gyro.  Figures 7.2-1 and 7.2-2 
show records of the input,  float  angle and torquer output when two different 
input  oscillation  frequencies were simulated.  The  sampling rate in both 
cases  illustrated is 1 mHz, providing  essentially  continuous  ternary  loops. 
The  closed loop gain of this  gyro is distinguished by jump  resonance and a 
peak at 400 Hz (see  Fig. 7.2-3). Discrete  points  obtained via simulation 
are indicated  while the curve  predicted by describing function analysis 

appears as a solid  or  dashed line, Note that the  analytic  I'esponse  contains 
unstable  segments in the  jump  resonance  region which cannot be observed 

for any length of time by simulation.  They  represent  unstable  modes which 

do not occur in the  actual  instrument either, Agreement between the analy- 
tic and simulation  results is quite good  on the stable  portions.  The  response 

is similar in shape  to  the  curve  seen in Fig. 7.1-6. 

Figure 7.2-4 presents  simulation  records  illustrating  the be- 

havior of the ternary  gyro  float  angle at a jump resonance  point.  The  input 
frequency is being raised so slowly that the change  cannot be detected on the 
record, but the gyro  float  angle  behavior  shows a clear  discontinuity.  The 

gain of the gyro loop was observed  to  increase  suddenly at the point where 
a. becomes  larger.  The point shown is the amplitude jump in Fig. 7.2-3 
that takes place at 500 Hz as the input frequency is increased. 
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Figure 7.2-1 Ternary  Gyro  Simulation  Records: 20  Hz Input 

Frequency  Islands - The  existence of frequency  islands was also 
verified using a ternary gyro simulation. Figure 7.2-5 displays  some  por- 
tions of the simulation  record  to  illustrate  gyro  behavior as the input am- 
plitude was slowly reduced,  The  lower  trace shown in  each box is that of 
the output of the zero  order hold device in the gyro loop. This  represents 
the torque  level  called  for by the rebalance logic and is directly related to 
the gyro output. It can  be  seen  that the desired  rebalance  torque (and 
consequently  gyro  output)  remains  essentially unchanged in spite of a large 
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Figure 7.2-2 Ternary  Gyro  Simulation  Records: 150 Hz Input 

reduction in the gyro input  magnitude. For  the input shown in the last box 
the gyro would not exhibit an output i f  it had been excited by holding the  in- 

put  amplitude  constant while raising  the  frequency  to the value shown. 

Random Inputs - In spite of the difficulties  concerning  multi- 
moding that are  outlined in Section 7.1.2 some  success was realized by 

predicting  the  response of a ternary gyro to  random  inputs  using  the gain 
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Figure 7,2-4 Ternary  Gyro  Simulation  Record  Illustrating 
Jump Resonance 
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Figure 7.2-5 Ternary Gyro  Simulation  Record  Illustrating 
Origin of Frequency  Islands 
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characteristics computed from  sinusoidal  describing  functions. How- 
ever, it is believed that a wide range of situations cannot be treated with 

this  approach. 
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Sinusoidal  response gain characteristics  were computed for  a 
ternary  pulse  rebalanced  gyro  with  the following parameters: 

Tf = 0,00125 sec T = 0.00005 sec 
tg  

6 = 3.04~10'~ rad C = 2 x 10  dyne  cm  sec 

H = 2 x 1 0 5 ~ - c m ~ / s e c  = 1 rad/sec 

w = 0.1 rad/sec 

5 

wimax 

It was assumed that i f  a random input of r m s  magnitude, cr = 0.1 rad/sec, 
was experienced by the  gyro, the sensor loop would amplify or attenuate  the 
random  signals in each  narrow  frequency band by the  same amount as it 
would modify a sinusoidal input at that frequency.  That is, the gain curve 
computed using  sinusoidal  describing  functions would represent the square 
root of the  ratio of gyro output and input  power spectral  densities. Using 
the  ternary gyro simulation  the  ratios of spectral  densities  were  deter- 
mined for a broad bandwidth random input  with 0, l   rad/sec  rms magnitude. 
Figure 7.2-6 illustrates  the  comparison between the  analytically  predicted 
ratio of spectra and those  observed by simulation. Good agreement was 
noted up to the frequency of the peak gain predicted by analysis. Beyond 
that point  describing function analysis predicted a complete loss of output 
signal  (zero gain)  while  the simulation exhibited a rapidly  diminishing gain. 

w i  

Two factors  prevent the general  use of sinusoidal  describing 
functions for predicting  the  response of ternary gyros to  random inputs: 
At high input  frequencies  the  ternary  gyro fails to  respond  to a sinusoidal 
input  but  does give some  response  to a random input. This is illustrated 
by the gradual  reduction in observed  closed loop gain shown in  Fig. 7.2-6. 
When the input amplitude is large enough, jump  resonance  regions  appear 
in the  sinusoidal  response and interpretation of the  curve in terms of the 
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Figure  7.2-6 Random Input Response of a Ternary 
Gyro: Comparison of Analytical  and 
Simulation  Results 

random input response is difficult.  The  analog  to  jump  resonance is dual 

moding in the random  response,  predicted in Section 7.1.2 using a different 
and more  sophisticated  analytic  approach. (It should be noted that there is 
no significant jump resonance  region  in  Fig. 7.2-6 and analysis of this case 
using  the  approach of Section 7.1.2 does  not  predict  dual moding. ) 

On the  basis of these  results it is possible  to  suggest that i f  the 

r m s  amplitude of a random input is a small  fraction (1/10 in the  case  treated 
here) of the  maximum torquer capability,  the  simpler  sinusoidal  describing 

function  technique  may  be  used to make a rough  estimate of the  gyro trans- 
mission gain to  the low frequency  portion of the input spectrum. 
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7.3 SUMMARY 

It has been shown that ternary  torqued  instruments can  be 
analyzed  using  describing  functions.  The  analysis is somewhat  more 
complicated  than that required  to treat binary  torqued  sensors so a digital 
computer  program was written to reduce the labor involved. The  ternary 
gyro is seen  to  exhibit  an  essentially input-dependent (nonlinear)  response 
to both sinusoidal and random  inputs.  This is a consequence of the un- 

mitigated  nonlinear  behavior of the ternary  torquing  logic  used. Also, 

ambiguous  operation  (jump  resonance and dual moding)  can occur  over a 
wide range of input magnitudes and frequencies. While considerable  suc- 
cess was  achieved in predicting  the  sinusoidal  response,  the  behavior in 
the presence of random  inputs was found particularly  difficult  to  analyze 
under  certain  circumstances,  Further  work is needed  in this  area. 
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8. TIME-MODULATED  REBALANCE  LOOPS 

In the  preceding two chapters  the  behavior of binary and ternary 
pulse  rebalanced  sensors  was  analyzed  with  the  aid of describing  functions. 
In this  chapter  the  response of the  time-modulated loop is studied. A des- 
cribing  function  analysis is used  to  analytically  predict  the  closed loop 
characteristics, with  analog  computer  simulations  providing  an independent 
check of the  analysis. 

8.1 ANALYSIS OF THE TIME-MODULATED GYRO 

8.1.1 Response  to  Sinusoidal Inputs 

The  time-modulated loop is illustrated in  Fig. 8.1-1. Note that 
the float  and  torquer  dynamics are characterized in the  same  manner as in 
the  binary and ternary loops treated earlier. The  torquing logic for  the 
time-modulated  torquing  scheme is discussed  in Section 5 . 1 .  Referring  to 

ROTOR 8 GIE,\BAL 
DYNAMICS 

R - 3939 

TORQUER 
DYNAMICS 

ZERO ORDER 
HOLD 

Figure 8.1-1 Gyro  .Rebalance Loop with  Time- 
Modulated Pulse  Torquing 
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Figure 5,l-4, i f  D is the nonlinearity  drive  level,  the  equivalent  gain of 
the time-moiqllated  torquing  scheme to a slowly  varying signal, A , is 
given  by the describing function  (Ref.  10): 

* 

NA - 
- Average output over  one  sawtooth  period 

A 

- " D .  
Ad ' 

for A < Ad (8. 1-1) 

where Ad is the peak value of the sawtooth  waveform. Here it is assumed 
that no harmonics of the square wave torque  pattern are present  in the float 

angle.  The  sawtooth  magnitude, Ad, is chosen  to  be larger in magnitude 

than  any  float  angle  signal  encountered  to  ensure that the inequality re- 
quired in Eq. (8.1-1) always holds. 

Figure 8.1-2 shows a linearized  model of the system, with the 

gain NA representing the time-modulated  torquing  scheme.  This  model 
describes the input-output relationship of the loop with respect to  slowly 
varying  input  sinusoids,  neglecting output  components at other than the 

input frequency. A linear  transfer function for this loop can be written, 

using the figure: 

* 
The term slowly varying  means that the major  frequencies  present 

are well below the sawtooth frequency. 
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Figure 8.1-2 Linearized  Representation of 
the  Time -Modulated Loop 

where a small denominator  term  in s and a small numerator  term  in s 

(both caused by the  torquer  lag) have been  neglected.  The  denominator 
of Eq. (8.1-2) is second  order.  Therefore an equivalent  damping ratio, 
<, and  natural  resonant  frequency on, can be defined for this loop: 

3 

(8.1-3) 

Equations (8.1-3) provide a two-parameter ( p  and un) description 
of the linear  representation of the  time-modulated  sensor loop. If in-loop 
compensation is added the  description of closed loop dynamics is devel- 
oped in the same  manner -- the torquing  logic is represented by the 
describing function  gain NA and the closed loop linear  transfer function 
is prescribed. 
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8.1.2 Response to Random Inputs 

The  describing  function of the time-modulated  torquing  logic 
(Eq. (8.1-1)) is independent of input signal  magnitude and frequency, with 
the  assumption  that all components of a random input at frequencies greater 
than  that of the  sawtooth are filtered by the linear  float  dynamics. Under 
these circumstances the transfer  characteristics of the  time-modulated 

loop in the  presence of a random input are the  same as for a sinusoidal in- 

put. Thus  Eq. (8.1-2) can be used to  predict  the  response of this gyro loop 
to  random  inputs. 

8.2 SIMULATION OF THE  TIME-MODULATED GYRO 

Section 8.1 presents a technique  for  analyzing the time-modulated 

loop. A typical gyro loop was analyzed by this method and then simulated on 
a hybrid  computer  to  verify the analytically-obtained  gyro  transfer  charac- 
teristics. In the  simulation the assumptions on which the describing function 

technique is based were tested by including all of the details that were  ignored 
in the analysis. A sawtooth  waveform was added  to  the  float  angle  signal at 
the input  to a binary nonlinearity. The sampler was implemented  and  the 

torquer was simulated as a first order lag. 

The  parameters of the  gyro loop simulated,  most of which are 
identical  to  those  used  in  the  binary loop analysis and simulation in 

Chapter 6 ,  are given below. 

5 K D = 2 x 10 dyne-cm Sawtooth Period = 1 msec t9 

T t 9  
= 0.0001 sec Tf = 0.0025 sec 

Ad = 0.83 m a d  Of 
float  angle 

W'  = 1 rad/sec 
lmax 
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The  sinusoidal  responses obtained by analysis and simulation are shown in 

Fig. 8.2-1. The solid  lines are analytical  predictions of gain and phase 
shift with simulation  data  denoted by circles and crosses.  There is generally 
good agreement  between the two approaches.  This  indicates that the des- 
cribing  function  technique  can  provide  accurate  predictions of the response 
of this gyro loop to  sinusoidal  excitations. (Note that the response shown 
is for  frequencies well below that of the sawtooth, as required by the des- 
cribing  function  theory employed). 

R - I 7 9 3 o  
- 
- 
- 0 GAIN BY SIMULATION 
- X PHASE  SHIFT BY SI?/IULATION 
- - GAIN BY ANALYSIS 
- -- PHASE  SHIFT BY ANALYSIS 

0.1 I - 
10 100 1000 

INPUT FREQUENCY (Hz) 

Figure 8.2-1 Sinusoidal Input Response  for 
the Time-Modulated  Gyro 

The  random  response  obtained by analysis and simulation is 
shown in Fig. 8.2-2. The  solid lines are analytical  predictions of gain with 
simulation data indicated by circles.  The loop parameters  used in this 
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Figure 8.2-2 Random Input Response  for 
the  Time -Modulated Gyro 

simulation  run  were  the  same as stated  above  except that the float  time 

constant was 0.001 sec.  There is close  agreement between the analytic 

and simulation  results. This indicates that the describing function  out- 

lined is a valuable  analysis  technique  for  determining  the  random  response 
characteristics of sensors with time-modulation  torquing. 
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8 . 3  SUMMARY 

The  investigation  outlined  in this chapter  illustrates that a simple 
analytic  technique  can  accurately  predict  the  response of an  inertial  sensor 
with  time-modulated  torquing to sinusoidal  and  random  excitations. As with 
binary  and  ternary  loops,  simulation  results  support the validity of the des- 
cribing function approach  for  analyzing  the  time-modulated loop. The  presence 
of the sawtooth wave (dither) at the nonlinearity input plays the same  role 
as the limit  cycle in binary  torqued  sensors -- it linearizes  the  response 
of the loop by fixing  the  effective  gain of the nonlinear  torquing logic. The 
time-modulation  technique  offers two significant  advantages  over the binary 
scheme in this regard: By introducing the dither artificially it can be pre- 
cisely  removed  from the sensor output and will  not  be quenched by any  input 
to the instrument. Also, finer output quantization is acheived. 

The importance of the  analytic  techniques developed in Chapters 

6 , 7 ,  and 8 is that the performance of a particular  sensor  design can be 

evaluated  prior  to  constructing  the  instrument,  The  effects of varying 
instrument  parameters  can be predicted and a set  of best parameters can 
be determined  before  prototype  assembly  begins. 
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PART III: ERROR REDUCTION 



9. SEmCTION OF SENSOR PARAMETERS 

TO REDUCE  SYSTEM  ERRORS 

In the first two parts of this report  system-level  errors  generated 

by vehicle  motion  were  explored  and  approximate  analytic  techniques  for 

describing  the  response of pulse  rebalanced  instrurnents  were developed. 

It was established that motion-induced e r ro r s  in strapdown  systems  can 

degrade  navigation  accuracy  to a level  well below that needed for many 

applications,  The  calculations  concerning  sensor loop response  were  de- 

veloped to  permit  quick and accurate  assessment of strapdown  system 

e r ro r s  under a wide range of gyro and accelerometer  parameters. 

At this point we are equipped t o   e q l o r e  ways of reducing the 

effect of the motion environment on strapdown  inertial  systems. Again the 

principal  emphasis is placed on gyro design, since the calculations dis- 
cussed in Section 4.2 indicate that motion-induced e r ro r s  have their great- 

est impact on system  attitude  accuracy,  relative  to what  can  be achieved 

using a gimballed  (platform)  mechanization. This chapter  discusses  error- 

reduction by choosing basic parameters within the gyro, including its re- 
balance  electronics.  The  subsequent  chapter treats the possibility of neu- 

tralizing motion-induced e r ro r s  by measuring the environment,  calculating 

the  resulting  errors, and compensating  them. 

- 

9.1 DE  SIGNABLE PARAMETERS 

The availability of computer  programs  (such as that described 

in  Section 4.2 and Appendix B) for  establishing  the  magnitude of motion- 

induced er rors   in  strapdown  systems  permits a trial-and-error  approach 

to choosing the optimum set of inertial  sensor  parameters, However this 
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method is quite tedious  because of the  large  number of parameters  that 

may  be  varied,  and a different  tack is taken  here.  The  insight  gained 

from  the  analytic  optimizations  performed in this chapter  leads  to one of 

the  major  conclusions of this study -- that  sensor  parameter  selection is 
of limited  value  in  reducing  strapdown  system  errors. 

When attempting to  specify a gyro that minimizes  the  motion- 

induced errors  described in Chapter 2, the  sources of inaccuracy  can be 

divided  into  two  broad  categories: e r ro r s  whose generation  involves 

parameters  basic  to  the  sensor  operation, and errors  arising  from 
imperfect  construction  and  other  considerations which the  designer 
always tries to  minimize.  Examples of the latter category  include  aniso- 
elasticity and torquer  scale  factor  errors, A list of the first group, 

referred to  hereafter as "designable  parameters," is provided in Table 
9.1-1.  Subsequent  discussion  will  concentrate on the designable  param- 

eters because when dealing with other  error  sources,  the  design goal is 
obviously to  minimize  them all. In many cases  the  designable  param- 

eters can be lumped together  and  the  optimum  design  problem  involves 
specifying  the  best  values  for  groups of parameters.  Figure  9.1-1  illus- 

trates  parameter  groupings  possible  for a simple  model of a ternary  pulse 

rebalanced  gyro. 

Limiting  Constraints - Several  gyro  parameters  or  groups of 
parameters are confined within limits  imposed by physical or  practical 

considerations.  For  example, the parameter group K D/H (D' in  Fig. 
g.l-l(b))  must  exceed  the  maximum  anticipated  input  angular rate. If this 

condition is violated,  the  gimbal  angle  cannot  be  held  near  null  and,  in 

practical  gyros,  the  gimbal will rotate  until it is restrained by mechanical 
stops,  causing  the  history of input  angular motion stored  in the float t o  be 

rendered  incorrect. 
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TABIS 9.1-1 

DESIGNABLE  PARAMETERS:  SINGLE  DEGREE OF 
FREEDOM FLOATED RATE INTEGRATING GYRO 

Rotor Spin Angular Momentum, H 

Gimbal-Plus-Rotor Output Axis Moment of Inertia, loo 

Fluid  Damping  Coefficient, C 

Rotor Spin Axis Moment of Inertia, Issr 

Gimbal-Plus-Rotor Anisoinertia, Iss- Iii 

Torque  Generator  Time  Constant, T 

Signal  Generator  Sensitivity, K 

Torque  Generator  Sensitivity, K 

Wheel Speed  Regulation Loop Frequency  Response 

Sample  Period, T 

Torque  Level, D pulse  torqued gyros 

Gimbal Angle Threshold, 6 

tg  

s g  

t g  

When a maximum gyro output increment, hemax9 is spec- 
ified in order to  keep  quantization and commutativity e r ro r s  in the  direc- 

tion  cosine  calculations within certain bounds, the gyro sample period T 
must  satisfy  the  relation: K DT/H 1; Ae (If the gimbal is not torqued 

for the entire  period, the pulse  length T must be substituted  for T in this 
relation. In other  words,  once the torque  generator output has been scaled 

to  imply an input angular rate, the value of an output pulse is directly 

tg  m a "  

P 
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(a) Simple  representation of ternary  pulse  rebalanced  gyro loop 

y’ = - c v  sec-2 ” Ks g 

(b) Illustration of parameter grouping  possible 

Figure 9.1-1 Parameter Grouping in a Ternary  Torqued 
Pulse Rebalanced  Gyro 

related  to the  torque  pulse  period.  Also,  the  inequality  discussed earlier 
becomes ( T ~ / T )  K D/H 2 Oi,, if torquing  does  not  occur over the  en- 

tire period.  These  expressions  may be further modified i f  the  torquer  lag 

precludes  application of essentially  rectangular  torque  pulses o )  

tg 

A  physical  restriction is imposed on the  rotor  moments of 

r inertia  Iii  and Is,, i f ,  as is common in  single-degree-of-freedom  gyros, 

the  rotor  shape is a wheel.  This  restriction is that Iiir 2 Issr /2. 
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Furthermore,  since Io, - Iii, the important  parameter  group Ioo/H 

is bounded according  to 
r 

- 

I 
00 1 
H 2n 
- > -  (9 0 1-1) 

In the  optimization  examples which  follow, the  above  constraints 
provide  limits on the  range  over which parameters can  be  varied,  reducing 
the size of the  parameter  space which can  be  searched  to find the optimum. 

9.2 COST  FUNCTION AND RE PRESENTATION 
OF RANDOM MOTION 

The computer  program  discussed in Appendix B treats motion- 
induced e r ro r s  at a much finer  level of detail than is tolerable  for an 
analytic (though approximate)  approach to optimizing gyro parameters 
For  example, the errors  are  classified  according  to  cause by the  computer 
program. Since the goal of the  analytic  optimization  will be minimization 
(in some  sense) of the  system  attitude  errors, a way must be found for 
combining both deterministic  errors  (those  caused by deterministic  effects 
such as anisoinertia)  and  random errors  (resulting  from  manufacturing 
imperfections  such as torquer  assymmetry).  Ideally a single,  generally 
valid  measure of attitude e r ro r s  is desired.  Also,  cumbersome  descrip- 
tions of the motion environment  such as spectral  density  functions do not 
lend  themselves  to the kind of formulation  sought in this  chapter. Both of 
these  aspects of the  optimization  problem are  treated below. 

In Ref. 1 calculations of constant  gyro-level e r ro r s  caused by 
the angular motion environment  were  performed,  based on the e r r o r  
sources  detailed in Chapter 2. It was found that in-phase  angular 
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oscillations  about two gyro axes  provide much larger  total  system  drift 
rates than  quadrature  motions of the same  size. Consequently,  random 

angular motion will be represented in terms of a single  angular rate vec- 
tor, E, having some  orientation with respect  to the system (and sensor) 
axes, as shown in  Fig. 9.2-1, This  permits  specification of cross  spec- 
tral density  functions between pairs of axes in terms of a single  spectral. 
density function and proportionality  constants. 

1 
R-4003 

x ,  y, z are VEHICLE AXES 

/ / 

X -  

Figure 9.2-1 In-Phase Angular Oscillations 

It is not realistic  to  expect w - to  maintain a fixed  attitude within 
the  vehicle.  Instead, a simplified  description of varying  orientation is 
used;  the  random angular vibration  vector is presumed  to  maintain a fixed 
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direction in vehicle  coordinates for intervals of equal  length T ' and to 

assume a new attitude at the end of each  interval. The orientations are 
independent  from one period t o  any other  but may obey some  probability 

distribution to  account  for  different  amplitudes in the  vibration  spectra 

about  the  vehicle axes. This is a good description of important  random 

a n g u l a r  motions  such as structural  vibration and lightly  damped vehicle 

dynamics. 

Constant Gvro Drift Rates - Over  each  interval  for which the 
~ ~ ~ ~ ~ ~ 

angular rate vector, - w ,  in Fig,  9.2-1  maintains a fixed  orientation, 

the  major  constant  (rectified)  gyro errors can be expressed in terms of 
the  spectral  density  function CP (u),  direction  cosines  describing  the 

projections of w on the three principal axes, and the gyro transfer func- 

tion, viz: 

ww 

(9.2-1) 

where K1 and K2 are constants which represent the orientation of w - 
and  appropriate gyro physical  parameters.  The function L(v )  is in- 

cluded to  represent gyro transmission  characteristics when they  appear, 

For example, if spin-input  mosscoupling  errors are considered K2 is 
the steady state gyro float  angle  sensitivity (rad/(rad/sec)) and L(u) is 
given by 

(9.2-2) 

where G(s) is the  Laplace  Transform gyro transfer function, K1 is the 

product of direction cosines between w - and the spin and input axes of the 
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gyro  under  consideration and a minus sign precedes  the  expression. The 
effect of changing  the  orientation of w - is reflected  in  changing  values of 

Using  Eq. (9 2-l) ,  the  system  attitude  error due to  a constant 

gyro e r ro r  grows by the amount 

6(i) = Kl(i)K2T ' 1, L(v) @ (v) dv ww (9.2-3) 

during  the ith interval of length T I o  Since  the  orientation of w - is inde- 
pendent from one interval  to  another the coefficient Kl(i) is also independ- 

ent.  Assuming  symmetric  distributions  for the orientation of w, - the  fol- 

lowing expectations hold: 

- 
6(i) = 0 for all i 

The mean square  total  system  attitude error at the  end of N intervals is 
given by* 

(9.2-5) 

If T ' is constant  and if QW,(v) and the probability  distribution  for  the 

orientation of - w are stationary, 

* 
Equation (9.2-5) assumes that the total attitude e r ro r  is small enough 

to allow its components  to be treated additively. In other  words,  sys- 
tem  accuracy  must  approach  that of a useful  navigator, 
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= t T ' g 3 ?  1 2  

t = NT' 

[I; ww l2  L(v) @ (v) dv (9.2-6) 

Note that for a given system  operation  time  the  attitude  error  expressed 

in Eq. (9.2-6) is proportional  to  the  correlation  interval T'. Equation 

(9.2-6) uses an integral  expression  to  provide the average drift rate over 

an interval T'. However, the  integral is only correct when considering 

averages  over an infinite  time.  Appendix G of Ref 1 illustrates condi- 

tions  for which the  integral is approximately  correct  for  finite-time 
averages. We will  assume  those  conditions are satisfied in the examples 

which follow. 

Constant  System-Level  Drift Rates - Errors  that  rectify at the 

system  level can be illustrated by considering  the  constant  system  drift 

rate  resulting  from output axis angular  acceleration  errors.  These can 

also be viewed in terms of an integral  over the random motion spectrum 

according  to 

I cons.tant system  drift - - < 9 $iL(v) @ ( v )  dv (9.2-7) 
rate, per gyro ww 

where K is the  direction  cosine between w and  the output axis of the gyro 

whose e r r o r  is being  considered and' L is defined as 
3 - 
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The  appearance of the  second  power of both K3 and G(jv) in Eq, (9.2-7) 

follows from  the fact that  the  system-level  error  results  from  the out- 

puts of two separate  gyros. Since 

the  mean  square  system  attitude  error  resulting in this case is not de- 
pendent on the interval T ': 

Other  attitude rate e r ro r s  that rectify at the  system  level 
(such as products of errors  from  pairs of gyros, etc. ) can  be treated by 

similar  relations involving gyro transfer  characteristics and direction 
cosines ,, 

An attitude  figure-of-merit is defined by 

= AT't + Bt 2 
(9.2-9) 

where the first term  comes  from  gyro  errors of the type represented 
in Eq. (9,2-6)  and the second  from  errors of the kind expressed  in 

Eq. (9.2-8). 
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9 , 3  EXAMPLE I: BINARY GYROS 

In this example we seek to  optimize the parameters of a triad 
of binary  pulse  torqued gyros. The gyro  transmission  characteristics are 
those of a linearized  second  order  system,  and depend on T~ and r 
according  to the equations  provided in Section 6.1  1 .  One of the basic 
results of that  section is that the transmission  characteristics of the 
linearized  gyro loop a r e  independent of loop gains K K and D. Also, 
it is assumed in this  example that gyro e r ro r s  due to  limit  cycles are not 
allowed to  reach the direction  cosine  calculations.  Consequently,  the above- 
mentioned three  parameters do not enter the optimization  problem  directly. 
The gyro sample  period, T, is not considered  significant in determining 

the  limit  cycle (and therefore  the  transmission  characteristics. ). Since 
no maximum  size for the  gyro output increment, A@, is stated,  the 
sample  period  does  not  enter the examples as a parameter  to be  opti- 
mized. Of course a threshold, 6, does  not  enter  the  problem  either. The 
remainder of the  designable  parameters  listed in Table 9.1-1 ,  a total of 
six,  remain  available  for  manipulation. Of these, the terms Iss - Iii and 
Iss, a r e  grouped to  describe  the  "effective  misoinertia." The time con- 
stants T and T~ = Ioo /C describe  linearized gyro dynamics,  particularly 
the gyro bandwidth, which is equated  to wn, the  natural  frequency of the 
closed  gyro loop, The  independent  groups of designable  parameters are 
reduced  to  three: gyro bandwidth % (depending on T C and roo), the 
ratio bo /H  and the ratio of the  effective  anisoinertia  to bo. Then the 
major  contribution of anisoinertia  errors is assumed  to take place in a 
frequency  range where the effective  anisoinertia is constant, and this 

term is assumed  to be nulled by appropriate  design.  The  optimization 
takes  place in the two-parameter  space of the gyro bandwidth and the 
output axis sensitivity, Ioo/H. 

t g  

sg' t g  

tg 

tg' 
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The. analytic  optimization  procedure  to be used can be sum- 
marized as follows: 

10 

2. 

3. 

4. 

5. 

A  starting  set of gyro parameters is specified.  To 
the  extent that the  effect of the individual  param- 
eters is understood, a set of values which  may be 
close  to the optimum is chosen, 

The  major  system  error  contributors  are  deter- 
mined for the  initial gyro parameters, In the given 
environment  some  gyro e r ror   t e rms  may  not be 
significant  and  their  elimination  simplifies  the op- 
timization  problem. 

The system  attitude e r ro r  is expressed as an 
analytic function of the  major  error  sources and in 
terms of the designable  gyro  parameters.  The 
motion environment is reduced  to  the  form of nu- 
merical  coefficients at this point  but gyro param- 
eters  appear  explicitly in the  expression. 

The  figure-of-merit is minimized with respect  to 
all the  gyro  parameters  appearing in the equation 
developed in Step 3. Since all error  sources do 
not  contribute  to  system e r r o r  growth in the  same 
manner (see Eq. (9.2-9)) this  usually  requires 
specification of an "evaluation  time," t, and mini- 
mization of the system  error at that time, 

At the conclusion of minimization a check is made 
to see i f  the same  error   terms dominate when the 
gyro has the  optimum set of parameters, If not, 
steps two through  five are repeated as often as 
necessary, 

The vehicle  angular motion experienced by the  sensor  package in 
th i s  problem is assumed  to  consist of a constant  angular  rate of 0.1  rad/sec 
about one vehicle  axis and a random  angular  rate motion  about each axis 
described by a constant  spectral  density @ ( u )  = @ = 10m3(rad/sec) /Hz 
from  zero  to 1000 Hz. The  random motion correlation  period,  T is 

2 
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0.5 sec. This environment  may be representative of that experienced in 
a lunar module during  powered  descent. The principal axes of the sensors 
are parallel  to  those of the vehicle, with the  orientations  illustrated in 
Fig. 9.3-1. 

R -  4002 

Figure 9.3-1 Orientation of Gyros for  Examples I and 11 

Step 1 - The initial  set of gyro  parameters is that provided in 

the example of Section 4.1. In addition,  the  float  damping  coefficient and 
torquer  time  constant  are 8 x 10 dyne-cm-sec  and 50 psec  respectively. 
Linearization of a binary pulse  torqued gyro with these  characteristics 
yields a second-order  gyro  transfer function with natural  frequency, wn, 

5 
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of 972 Hz and a damping  ratio of 0.26.  However, in order to simplify  the 

problem the gyro is assumed.to have a unity transfer function up to  the 

natural  frequency and zero elsewhere. 

Step 2 - The dominant system  error  sources  generated in the 

gyro whose characteristics are given above all result  from  random 
motion.  They are the constant  drift rates due to  anisoinertia  errors at high 
motion frequencies,  spin-input  crosscoupling and pseudo-coning from out- 
put axis angular  acceleration  errors. (Note that the  same  three  sources 

of errors  caused by designable  parameters  dominate  the e r ro r s  in the 
examples of Sections 4.1 and 4.2. ) System errors  arising  from  the  constant 

angular  rate  postulated  are  negligible, as are  system pseudo-coning e r ro r s  
generated by oscillatory  errors in pairs of gyros. Also,  since the gyro 

loop has unity gain over  almost all of the random motion  bandwidth, e r ro r s  
due to undetected  coning  motion a re  not significant. Of course  they  must be 
given consideration  again if the gyro bandwidth is reduced as a consequence 
of the parameter  optimization. 

Step  3 - The  expression  for the system  attitude e r ro r  growth, as 
reflected in the  figure-of-merit  defined in Section 9.2, is: 

J(t) = 3 

- I /  

(9.3-1) 

The first term in Eq. (9.3-1) describes the  contribution of output axis 
angular acceleration  gyro e r ro r s  through  pseudo-coning. It is obtained 

from Eq. (9.2-8)  using  the following definitions 
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v on 
L(v) = c u ’ w n  

and  expressing  the  spectral  density in (rad/sec)  /rad/sec  and w n  in 

rad/sec. The second  group of terms  results  from  constant gyro e r ro r s  
due to  spin-input  crosscoupling  and high frequency  (oscillations above  the 
rotor  speed  regulation loop bandwidth) anisoinertia  terms  respectively. 

2 

The  crosscoupling error term  derives its .form  from  the  fact that for the 
linear  representation of the  limit  cycling  binary gyro (see  Fig. 6.1-2) the 
average  float  angle, ao, resulting  from an input angular rate, wi, is 

given by 

(9.3-2) 

E quation (9.3-2) is obtained by algebraic  manipulations involving Eqs. 
(6.1-8) and (6.1-9).  This  relation was presumed  to hold for all gyro in- 

puts up to wn and no crosscoupling errors  were  assumed  to  result  from 
inputs above that frequency, The anisoinertia  error  term in Eq.  (9.3-1) 
represents  the  effect of e r ro r s  produced by oscillations above the rotor 
drive  natural  frequency. Since that frequency is typically less than 10 Hz 
the effect is assumed  to  occur  over the entire bandwidth of the random 
motion: 

1000 1000 

1 @(v) dv 2 $ @(v) dv = (1 rad/sec) 
2 

10 0 

The  figure-of-merit, J(t), is in (rad) and  T ‘ and t are  to be  specified in 
seconds . 

2 
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It is desired  to  minimize J(t) at some  specific  time, t'. By 

making  the following definitions 

t '  
T' 

a = -  

I 
00 c = " -  
H 

R =  3@2(T')2 

equation (9.3-1) can  be written in a form  more  suitable  for  analytic  optimi- 

zation : 

Step 4 - It can be seen  from  Eq. (9 .3-3)  that the optimum  value 

of the  parameter  group  b is zero;  designing  the  effective  anisoinertia  for 

high frequency  oscillations to  be zero  minimizes  system  errors  from this  

cause  independently.  Setting  the  partial  derivatives of J(t')/aR with respect 

to c and w n  equal  to  zero  provides two identical  equations for the  optimum 
groups of gyro parameters: 

4 4  ac  wn = 1 ; b = O  (9 0 3-4) 

indicating that a unique set  of optimum gyro  parameters does  not  exist, 

Evaluation of second  partial  derivatives  reveals that Eq. (9 .3-4)  specifies 
a minimum. If o is selected  to  permit  accurate  measurement of all anti- 
cipated  angular  rates by the gyros (on = 1000 Hz),  Eq. (9,3-4) provides 
the  optimum  value of the parameter  group  c  for  each  choice of evaluation 
time t' and correlation  period T'. Using Eq. (6.1-14) and assuming that 

n 
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rf >> r Eq.  (9.3-4)  provides a relation for Ioo, C  and H in terms of 

r and t‘/T’: 
t g’ 

t g  
I C  
00 2rtg 
H2 6 

- ?  

The minimum  value of J(t’)/aR is given by 

[g] = 2 f i  
min. 

(9.3-5) 

(9.3- 6) 

Choosing t = 1 min and on = 1000 Hz, a = 120 and the optimum  value 
of the  parameter  group  c is 4.82 x sec  (the  starting  value of c was 
1.25 x l o m 3  sec).  (From the limiting  constraints  discussed  in Section 9.1 

the new value of c  requires a wheel speed in excess of 100,000 rpm!) The 
minimum  system-level e r r o r  is: 

[ J(t9lrnin (0.41 deg)2 

This  figure  compares with a value for J(t’) of (7.45 deg) when the  original 
gyro parameters  are  substituted  into Eq. (9.3-3). Most of the  difference 
in the system  error is the result of reducing  the output axis sensitivity 
parameter  c,  causing a sharp reduction in pseudo-coning er rors ,  

2 

Step 5 - Computation of - all the  gyro-induced system  errors  re- 
veals that the  dominant error  sources have not  changed as a consequence 
of gyro parameter  optimization.  Consequently  the  minimization of J(t’)as 
expressed in Eq,  (9.3-1) is valid, 
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Effect of Compensating Output Axis Acceleration E r r o r s  - In 
addition to  selecting an  optimum set of designable  sensor  parameters it is 
also possible  to  reduce  certain  motion-inducederrors by measuring the 
environment  and  compensating  the  sensor  outputs, Output axis  sensitivity, 
which is the dominant  source of e r ro r  in the  present  example, is a well- 

known parameter of any gyro and its effect can be to a large extent  neu- 
tralized, It is instructive  to  explore  the  impact of compensation in this 

example. 

If we assume  that output axis sensitivity  errors are reduced to 

10% of their former value by compensation,  Eq. (9.3-3) becomes 

The  optimum set of parameters obey 

b = O  

ac4 u4 n = 100 

and 

- " 2 f i  
10 min . 

(9 .3-8)  

(9 0 3-9) 

If wn = 1000 Hz, the  optimum  value of c is 1 . 5 2  x sec  (requiring a 

wheel  speed in excess of 31,400 rpm) and 

Clearly,  compensation  can play a role 
of this  type. 

(0.13 deg)2 

in reducing  motion-induced e r ro r s  
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9.4 EXAMPLE 11: A TIME-MODULATED GYRO 

This  example  presumes an angular motion environment  repre- 
sentative of that which may be experienced by a strapdown inertial  navi- 
gator in a large  transport  airplane. Random angular motion about each 
axis is described by a flat spectral  density of lO-'(rad/sec) /(rad/sec) 
(notice  the  units are  different  from  those in the  previous  example) out to 
v = 27r rad/sec and zero  elsewhere. In addition,  sinusoidal  angular mo- 
tians  exist about two vehicle  axes (x and  z).  They both have an amplitude 
of 0.1  rad/sec and frequency of  27r/10 rad/sec  (0.1 Hz). The motions are 
7~ radians out of phase ( w x  = B cos at, wz = -B cos ut)  and represent  the 
dutch roll  oscillation  mode of the aircraft. * A gyro  employing the time- 
modulation rebalance  scheme is optimized. 

2 

r 

Step 1 - The starting  gyro  parameters and sensor  orientations 
are  identical with those chosen for  the first example, with the following 
additional  parameters, which are  peculiar  to  the  time-modulation  torquing 
te chnique : 

5 K D = Hui = 2 x 10 dyne-cm; A = 0.25 mrad of float  angle 
tg max d 

The dither  amplitude is chosen to  equal  the  magnitude of float  angle growth 
which will occur at maximum  input  angular  rate, in the absence of 
torquing: 

Ad = w. T H/C 
1 max 

-~ * 
The  phase  difference between x- and z-axis oscillations due to the 

dutch roll mode may range  from  125  degrees up to  180 degrees  for 
different  aircraft. The 180 degree  value is chosen here for simplicity. 
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where T = 10 sec. A must be specified  to  permit  calculation of cross- 
coupling errors  from the linearized  representation of the time-modulated 

loop discussed in Section 8,d-10 The  damping ratio  and  natural  frequency 
of the linearized gyro are, from the parameters  stated, 0.83 and 265 Hz. 
In the  calculations which follow the loop response will be  characterized  by 
unity gain and no phase shift up to  the  natural  frequency  and by zero gain 

above 265 Hz. 

-3 
d 

Step 2(a) - The significant  system  attitude e r r o r  contributions 
from the sinusoidal motion result  from pseudo-coning due to output axis 

acceleration  errors in the x and y gyros and the constant errors  generated 
in the  z gyro by spin-input  crosscoupling  and  anisoinertia  effects, 

Step  3(a) - Because the  dutch roll  oscillation axis  is fixed  in the 

vehicle, it generates gyro e r ro r s  which cause  system  attitude  errors  to 

grow as the square of elapsed  time. The appropriate  anisoinertia  term  in 
this case is Iii - Iss since  the  oscillation is well within any anticipated 
wheel  speed  regulation loop bandwidth. In terms of the oscillation  ampli- 
tude, B = 0 , l  rad/sec, and AI = Iii - I the  contribution of the  dutch  roll 

(dr) motions  to J(t) is given by: 
ss’ 

2 2 2  2 
Jdr(t) = (v) +(y [ ~ - d + % ] )  (9 ,4-1)  

where 

9 -20 



If the dither amplitude is chosen as described earlier 

d = ( c ) T  H (9.4-2) 

The first term in Eq. (9.4-1) describes  the pseudo-coning e r r o r  
drift rate about the nominal  y body axis resulting  from output axis sensi- 
tivity in the x gyro. The  second term is a collection of attitude  errors, all 
represented  in  terms of rotation about the  nominal z body axis: The first 

entry  results  from output axis sensitivity in the y gyro -- leading to  a 
pseudo-coning error .  The  second  and  third  entries are provided by recti- 
fied  spin-input  crosscoupling  and  anisoinertia  effects in the z gyro. Per-  
forming  the  squaring  operations  indicated in Eq. (9.4-1) yields: 

* 

In Eq. (9.4-3) J is in (rad)2 and t is in sec. 

Step 2(b) - The significant  contributors  to  system  error as a 
result of the  random  angular motion a re  pseudo-coning due to output axis 
acceleration  errors, and  constant gyro e r ro r s  caused by spin-input  cross- 
coupling  and anisoinertia. 

Step 3(b) - In terms of the spectral  density @ and bandwidth ur 
the  contribution of the  random motion to J(t) is given by 

Jr(t) = 34> 2 2  vrc  2 2  t + 3 T ' @ 2 v : ( d 2 + 2 ~ d c + ( ~ ~ c Z ) t  (9.4-4) 
00 00 

* 
Note that if the z gyro is rotated  from  the  orientation in Fig. 9.3-1  

by 180 deg.  about its input axis the  minus sign in Eq. (9.4-1) would 
be changed to a plus.  This  illustrates  another point  about e r ro r  re- 
duction in strapdown systems -- the  orientation of the instruments 
can sometimes  be  chosen  to  reduce  dynamic  errors, 
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Defining 

f = -  AI 
I 
00 

and  noting that for  this  problem 

B4 2 2  
r 

- 
2 >> 3@ v 

The  expression  for J(t ’) is 

J[t’] aB4 cd -fc  +fcd 2 c +-+-- - [ 2 d2  f2c2 a(T 
2  2 

(9.4-5) 

Step 4 - In Eq. (9.4-5) the  quantities  c and d cannot be  negative, 
but f can  take on any value. When the  definitions of c,  d, and f a r e  sub- 
stituted  into  Eq.  (9.4-5) it becomes  evident that the right  side of the equa- 
tion is a function of the  designable  parameters H, C ,  Ioo, and AI. Also 
because of the  definition of J, the  right  side is never  negative. A steepest 

descent  computer  technique was used  to  determine  the optimum values of 
the  designable  parameters.  Table 9.4-1 lists the  original  parameters and 
the  optimum set found by the computer  program when the value a = 120 

(T ’ = one minute, t ’  = 2 h r )  is specified. It is obvious from  Eq.  (9.1-1) 

that  the  optimal  value of Ioo called  for in Table  9.4-1 is not  realizable; an 
excessive wheel speed is called  for. 

The parameter  optimization was performed a second  time with 
2 constraint that Ioo 2 40  gm-cm (a wheel  speed  in  excess of 24,000 rpm if 

H remains unchanged).  The results  are  listed in Table 9,4-2,  As a 
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TABLE 9.4-1 

ORIGINAL AND OPTIMAL SET OF DESIGNABLE 
PARAMETERS:  NO  PRACTICALITY  CONSTRAINTS 

Original 
Value 

Optimal 
Value Parameter  

Angular Momentum, 

H,  (gm-cm  /sec) 

Damping  Coefficient, 

C,  (dyne-cm-sec) 

2 2.00 x lo5 2.00 x lo5  

8.00 x I O  5 8.00 x lo5  
~ 

250 3.53 x 
Output  Axis  Inertia, 

2 
Ioo’  (gm-cm 1 

Low Frequency 
Anisoinertia, 

2 Iii-Iss,  (gmrcm 1 
-4.00 -49.9 

TABLE 9.4-2 

ORIGINAL AND OPTIMAL  SET OF DESIGNABLE 
PARAMETERS:  PRACTICALITY  CONSTRAINT  ON 100 

I Parameter  Original 
Value 

Optimal 
Value 

# I 

Angular Momentum, 

H, ( g m r n 2 / s e c  2.00 x l o 5  2.00 x l o5  

I Damping  Coefficient, 

C , (dyne-cm-sec) 
8.00 x lo5  8.00 x lo5 

Output  Axis  Inertia, 
2 250 

loo, (gm-cm ) 
40.0 

I 

Low Frequency 

-4.00 -10.0 

I I 
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consequence of the optimization, the cost function (evaluated at t ' = 2 h r )  

is reduced  from (3.34 deg)  to (0.41 deg) 2 2 

Step 5 - The  dominant error  sources do  not  change as a result 
of the above optimization, 

Effect of Compensating Output ~ ~ - Axis ~ ~~ Acceleration Er ro r s  . .. . . - Let 

us assume that output axis angular acceleration  errors  are  reduced  to 
10% of their  gross  value by compensation, and continue to  impose  the con- 
straint that Ioo 2 40 gm-cm . The optimal set of gyro  parameters,  deter- 
mined by the steepest  descent  procedure, is shown in Table 9,4-3 As 

a result of the compensation the cost function (at t' = 2 hr)  was reduced 

2 

2 from (3,34 deg)  to (0,36 deg)  before  optimization.  Choosing  the  best set  2 
2 of parameters  further  reduces the  cost to  (0.04 deg) , at the expense of 

producing  float  (gimbal and rotor) inertia characteristics that a re  un- 

typical of current gyros. Clearly a major  reduction in system  errors 
caused by vibration  effects may be achieved by compensation  alone. The 
manipulation of gyro parameters, with potential  impact on other  important 

factors  (such as weight, size,  power,  random  drift,  etc. ) can  achieve 
similar  results when taken  alone o r  can  complement the compensation 

when both techniques a r e  used. 

Summary - The  question of lowering  vibration-induced  system- 
level  attitude e r ro r s  through  proper  selection of gyro  parameters has 

been analyzed. It was shown that the  major  errors  result  from  certain 

parameters which are largely unavoidable (at least in the  single-degree-of- 
freedom gyro); consequently,  reducing  system errors  requires sweeping 
changes in certain  gyro  inertia  characteristics. Even when physical  con- 

straints on these  parameters  are  not violated, it is possible that 
by redesigning  the  sensor  to  reduce one set of dynamic e r ro r s  
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TABLE 9 .4 -3  

ORIGINAL  AND  OPTIMAL SET OF DESIGNABLJI 
PARAMETERS: . .  OUTPUT AXIS  ERRORS  COMPENSATED 

1 
Parameter  

Angular Momentum, 

Damping  Coefficient, 

C,  (dyne-cm-sec) 

Output Axis Inertia, 

Ioo, ( P - c m 2 )  

Low Frequency 
Anisoinertia, 

I.. - (gm-cm2) 
11 

Optimal 

other  causes of error will be increased. Using approximate  analyses, it 
was shown that proper  compensation of a major  source of motion-induced 
gyro e r ro r s  yields an order-of-magnitude  reduction in the system  drift 
rate, without necessitating  redesign of the sensors. The  use of compen- 
sation  to  reduce  dynamic e r ro r s  is discussed in detail in the  next  chapter. 
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10. GYRO DYNAMIC  ERROR  COMPENSATION 

10.1 INTRODUCTION 

It has been shown in  Chapter 2 that strapdown  gyros and acceler- 
ometers are subject  to  errors which are a consequence of rotation  about 
their output and  spin axes as well as their input axes.  Because these e r ro r s  
result for parameters which are essential  to the operation of strapdown 
components, it is desirable  to develop  methods to  reduce or eliminate their 
effects.  Recognizing  the  presence of specific  dynamic error  sources one 
may devise  several  approaches  to  compensate component outputs, in order 
to obtain a better  estimate of input angular and linear motion. In this  chapter 
several compensation  methods  for  single-degree-of-freedom (SDF) strapdown 
gyros are illustrated, recognizing that similar  approaches are valid for 
SDF accelerometers. 

Before  certain  dynamic  errors may be compensated, knowledge 
of the  angular motion  about axes  other than the input (sensitive)  axis of a 
strapdown  gyro  must be available. To  achieve this the three gyros  (assumed 
here  to be  oriented with their input axes  orthogonal) which are  already 
present  to  provide  three-dimensional  system  attitude  information may be 
employed. In practice one may utilize the measurements  made by all three 
gyros to  generate  signals  for  compensating any one  gyro. 

Fundamentally, there are two distinct  classes  to which various 
compensation  techniques  belong.  To  illustrate one category,  consider the  

signal flow diagram  depicted in Fig. 10.1-1, where the  dotted  lines  indicate 
that additional  blocks are understood to be present  to  form the compensation 
for each  channel.  The  approach  illustrated  employs  filters,  labeled compen- 
sation  calculation, which process gyro  outputs.  The  addition of the filter  does 
not close any new feedback  loops.  That is, each  compensated  gyro output 
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Figure 10.1-1 Open  Loop Compensation 

does  not depend directly on any other  compensated output.  Consequently, 

the  approach can be referred  to as open loop compensation.  The open loop 

compensation of Fig. 10.1-1 is accomplished  through  the use of the  filters, 

whether  they  be  implemented in a digital or  analog  manner. 

" 

In contrast  to  the above technique, it is possible  to  introduce 

compensating  signals  in  such a way that new feedback  loops a re  closed. 
To  demonstrate,  consider  Fig. 10.1-2 where a closed  information loop is 
illustrated in the compensation of one gyro; the dotted  lines  indicate that 
similar  operations are performed  for the remaining gyros. The closed 
circuit can be seen by tracing the path of signals from  the  compensated 
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Figure 10.1-2 Closed Loop Compensation 

output and proceeding  through the filters until  the starting point is reached 
again.  This can be referred  to as closed loop compensation. - 

Note that "closed-loop" refers  to the fact that new feedback 
loops a r e  closed,  and by so doing, each  compensated  gyro output depends 
directly on another.  This  type of operation may be  entirely  performed  in 
a digital  computer.  Alternately,  the  outputs of the  compensation  calcula- 
tions  in  Fig. 10.1-2 can be  used  to  drive gyro torquers. In any case how- 
ever, one must pay careful  attention  to  stability when this technique is 
employed. 
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10.2 COMPENSATING  CROSSCOUPLING  ERRORS 

Crosscoupling e r ro r s   a r e  introduced  into a gyro's output when 
its float  (gimbal)  angle is off null  and  angular motion is present about the 

nominal  spin axis at the  same  time.  This is illustrated in Fig.  10.2-1. 
The  crosscoupling  torque  results  from the fact that a portion of case 
motion about the spin  reference axis (SRA) is projected  along  the  actual 

gimbal input axis. The  torque is given by - Hw a! (when o! is small), 
where H is the  spin  angular  momentum, w is the  rate  applied  about the 

SRA and a. is the float  angle. When the gyro float  angle is off null, motion 
about  the  case  spin axis is sensed,  generating a torque which is indistin- 

guishable  from that caused by motion about  the  case input axis. A signal 
flow diagram  depicting this behavior is shown in Fig. 10.2-2. It should  be 

noted that this kind of e r ror  is basic  to  the  single-degree-of-freedom (SDF) 

gyro, which relies on a non-zero  float  angle  to  infer motion about the input 

axis. 

s o  0 

S 

It has been shown in Chapter 2 that  crosscoupling can result in 
both oscillatory  errors and constanterrors. For example,  constant e r ro r s  
occur when the  gyro  float  angle  and motion  about the spin axis a r e  in-phase 
sinusoids. A constant error  torque due to  crosscoupling may introduce 
severe  system  attitude  errors while oscillatory  error  torques  may not be 

as objectionable  because  their  long-term  average value is zero, 

10.2 .1  An Approach  to  Compensation 

It was proposed in Ref. 14 that the  angular motion measured by 

a gyro triad (a set  of three gyros whose  input axes  are orthogonal) be used 

to  generate  compensation  torques  for  nulling e r ro r s  in the  individual  gyros. 
We consider  here  the  closed - loop compensation  afforded by measuring the 
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angular rate about the  spin  axis'of a gyro  to compute a corrective  torque, 
which when applied  to  the gyro float  tends to  cancel  the  error due to  cross- 
coupling. This  idea  extends  easily enough to  the  three  gyros in an ortho- 

gonal set. The  basic  approach is illustrated in Fig. 10.2-3 where, for 
simplicity, only the  compensation of a single  gyro is shown. Gyro A 

experiences  angular  motian about its spin and  input axes which generates 
a crosscoupling  error. The second  gyro (B) measures  the  angular rate 
about the spin axis of the first in order  to  provide  information  for  com- 
pensation.  (For  simplicity,  identical  parameters  are  assumed  for  gyros 
A and B). The  crosscoupling  error  torque  appears as the  product of the 

spin axis rate and  the  float  angle of A. (Its formation is traced by the 
heavy lines in the figure. ) The  compensation  technique takes the output 
pulse  train of B, multiplies it by the  float  angle of A and  applies a cor- 
rection  torque  to A. A similar  procedure would be followed to  compensate 
gyro B and the  third gyro in the  triad (not  shown). 

Ignoring the dynamics of the  torque  generators,  the  compensation 

torque, Mc, is given by 

(10.2-1) 

and the crosscoupling  error  torque, M is e' 

These two torques  oppose  each  other in the  compensated gyro giving a net 

torque 

(10.2-3) 
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Figure 10.2-3 Block Diagram of Crosscoupling 
Error  Compensation of One Gyro 

Earlier it was  demonstrated  that, at least when the input us is in a 
certain  range of frequencies, one  component of the  torquer  current, x#), 
is related  to  the input to  gyro  B by 

(10.2-4) 
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As a consequence of Eq. (10.2-4) 

(10.2-5) 

where x#) represents  harmonic components of x@). There  exist  three 
common cases  for which the average value of the  expression given by 

Eq. (10.2-5) is zero.  These  occur 

0 When xh(t) and %(t) are random  uncorrelated 

0 When os is constant  (in which case  the  xh(t)  can 
only consist of a sum of coherent  sinusoids) and 
q, is not a coherent  sinusoid. 

0 When us and q are in-phase  sinusoids, as would 
be generated by an oscillation  occurring in the 
plane of the  spin and input  axes. 

variables and at least one of them is unbiased. 

The accuracy  and  stability of this compensation  approach is 
difficult to  assess  analytically  because  the  float  angle  measurements  act 

as random  time-varying  (and not  completely  independen€)  gains. While 

the  interconnected  information  loops do not introduce any practical  prob- 

lem  other than additional  complexity,  no  theoretical  treatment of stability 
was found for this situation.  Therefore a simulation  study was undertaken 
to  investigate the properties of the  compensation. 

10.2.2 Simulation  Results 

At first, two gyros of the  ternary  rebalance type for which a 
representative  set of parameters was chosen were  simulated, with com- 
pensation as illustrated in Fig. 10.2-3. Ternary  nonlinearities  were 
simulated.  The input axes  were  assumed  to be at right  angles  to  each 
other.  This  simulation was exercised  for the case in which the input and 
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s p h  axis angular rates were in-phase sinusoids.  The  compensation  proved 

successful in removing  constant  crosscoupling errors   f rom the compensated 
gyro. With sinusoidal  inputs of amplitude 0.1 rad/sec on both axes, the 

compensation was effective at frequencies  up  to  about I00 Hz, 

This  success  prompted evaluation of a gyro triad in which  each 

gyro was  compensated by one of the others--closed loop compensation. 

Not only was the simulation  observed  to be stable, but when in-phase 

sinusoids  were  applied  about the two appropriate axes of each gyro, the 
cornpensation reduced  constant  crosscoupling e r rors  by about 80%. This 

percentage was obtained by comparing the crosscoupling e r r o r  indicated 

by one gyro with no  compensation to the error  obkined when full closed 

loop compensation  was  employed. As with the single  compensated gyro, 
crosscoupling  error  reduction  was  effective  over the range of frequencies 

up to about 100 Hz. 

10.3 COMPENSATING OUTPUT A X I S  ERRORS 

It was shown in Chapter 2 that a single-degree-of-freedom strap- 
down gyro will indicate a false input angular motion when experiencing  angu- 

lar acceleration  about its output axis.  This  effect is referred to as output 

axis (OA) angular  acceleration  error.  Specifically, it results from gyro 
case motion about the output axis and  float inertia. In the absence of a 
rebalance  mechanism, the angular  position of the float  relative  to the case 

changes when angular acceleration is experienced by the gyro case.  Because 
this float  angle cannot be distinguished  from that caused by motion  about the 
input axis, one  can interpret the effect of output axis angular acceleration  in 

terms of a torque  applied about the gyro output axis. The  apparent  error 

torque due to this effect is given by 
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effective OA error  torque = Ioo ci,, (10.3-1) 

where Ioo is the  effective  rotational  inertia of the  float about its output axis 
and ci, is the  angular  acceleration about the case output axis. 

0 

The output axis angular  acceleration  error would not  have a 
deleterious  effect on the performance of a single  strapdown  gyro if only 

sinusoidal motion were experienced  about its output axis. This is true 
because the average  error would tend  to  zero. However, OA er ror  in an 
orthogonal set  of gyros can  lead to  another  error known as pseudo-coning. 

Pseudo-coning can introduce  constant  system  attitude  drift rates; 
basically it results  from a combination of an  oscillatory  error in angular 

motion measured  about  one axis and a true  oscillatory motion about  an 
orthogonal axis, of the same  frequency  and with the appropriate  relative 
phase. Output axis errors  tend to be  most  damaging in this  manner. 
Furthermore,  most  pseudo-coning  errors  due  to OA sensitivity  are  not 
dependent on particular  correlations between motions  about  different  sys- 
tem axes, but appear when any vibratory  angular motion is present.  For 

this  reason,  techniques  are  desired  for  compensating OA angular  accel- 

eration  error. 

10.3.1 Open  Loop Compensation 

It is desired  to employ a simple  mathematical  model of a single- 

degree-of-freedom  strapdown gyro in the analysis of techniques  to com- 

pensate OA errors;  using a more complex one would render the problem 

intractable. Consequently, the strapdown  gyro is modeled as a second 
order  linear  system with the  structure shown in  Fig.  10.3-1,  where a and b 

may be related  to  gyro  parameters  and H is the  angular  momentum of the 
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Figure 10.3- 1 Linear  Mathematical Model 
of Strapdown  Gyro 

' gyro rotor at normal  operating  speedo  Note that the  parameter c is the 
ratio between the  effective  rotational  inertia of the gimbal  about the output 

axis, Ioo, and H, Because it is a measure of sensitivity  to output axis 
angular  acceleration, it is desired that c be as small as possible. 

Considering only input axis motion,  examination of Fig. 1003-1 

shows that in a well designed strapdown gyro the ratio I& ]/ I  q I is approxi- 

mately one for  frequencies less than 6. That is, the bandwidth of the gyro 

is approximately 6. It can  also be seen that the greater the  value of H, 

the less effect output axis motion will  have on the gyro's indicated rate, Gi. 
It is clear that in order  to  compensate  errors  introduced by output axis 
motion,  information about that motion must  be gained. For a strapdown 

system this  may be done by employing a set of three gyros, which might be 

arranged as shown in  Fig, 10.3-2, 

One approach  for  employing  the  information  obtained by the three 

sensors to reduce o r  eliminate  errors due to motion  about the output axes 

is illustrated in Fig. 10.3-3. This is classified as open loop compensation. 

It is valid  for  frequencies within the bandwidth of each gyro. Note that the 
portion of the figure enclosed by a dotted  line  represents the compensation 

and the remainder  reflects  the  behavior of the three  identical gyros. The 
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Figure 10.3-2 A Specific  Orientation of Three 
Gyros with  Input Axes Orthogonal 
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Figure 10.3-3 Open  Loop Compensation for  Three Orthogonal Gyros 
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rationale of the open loop compensation of Fig. 10.3-3 is as follows: 
Because gyro (2) measures the angular motion  about the output axis of 
gyro (1) it is reasonable  to add c times the derivative of (2)'s output to the 
output of (1) in an effort  to  cancel the output axis angular  acceleration 
error.  Similar  corrections may be  applied  to the outputs of gyros (2) 
and (3). 

Owing to  the  symmetry of Fig. 10.3-3, it is only necessary  to 
analyze  three transfer characteristics  to assess the value of this open loop 
compensation  technique.  Specifically,  the  following transfer functions need 
to be  determined: jl(s)/02(s);   &2(s)/02(s);  &3(s)/02(s). They are found 
to be 

j3(s) 

w2(s) = - ( c s ) ~  G(s )  

(10.3-2) 

(10.3-3) 

(10.3-4) 

Equation (10.3-2) shows that the OA angular  acceleration  error has been 
removed  from gyro (1). 

Equation (10.3-4) indicates that an e r ro r  is present in the output 
of gyro (3) even though no motion was assumed  to  exist about its input or 
output axes.  The  nature of this e r ror  is as follows: Referring back to 
Fig. 10.3-1, one observes thatthe response  to output axis motion is given by 
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(10.3-5) 

Equations  (10.3-2)through  (10.3-4)  illustrate thatthe price paid for  remov- 
ing the  effect of output axis error  from gyro (1) is to  introduce cs  t imes 
the e r ro r  that would be  present in - that gyro without compensation,  into  the 
output of gyro (3). For  angular motion at frequencies  such that 1 cs I < 1 , 
this  type of compensation is beneficial,  because it reduces the net  effect 
due to  output axis angular  acceleration  error in  the  three gyros in the 

triad. Using a typical  value of c = 10 sec, this  compensation is bene- 
ficial  for  frequencies less than about 160 Hz. The  smaller  the  value of c, 
the  greater  the  range of frequencies  over which th is  compensation may be 
used  effectively. 

-3 

Some mention  should  be  made  about the  implementation of the 

compensation technique  illustrated in  Fig. 10.3-3. Because a perfect 
differentiator  does not exist,  circuits which approximate a differentiation 
over a finite  frequency  range  must  be  employed  to  mechanize  the  opera- 
tion.  Difficulties are further compounded i f  it is desired  to  recover 
angular  acceleration  from gyro outputs which represent  incremental 
angular motion. This  requires "differentiating"  twice. In any case, 
the differentiation  operation can introduce e r ro r s  beyond those which have 
already been discussed,  because of the  necessarily  imperfect  implementa- 
tion. 

If it is known that angular  vibrations about a particular axis a r e  
dominant, one might want to  orient  the  gyros as depicted in  Fig.  10.3-4. 

It can be  seen that for  angular  vibration about axis @ only, no output axis 
errors  result. Also, i f  open loop compensation is employed in a 
manner  analogous  to that which was just  discussed,  the  residual output 
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Figure  10.3-4  Orientation of Three Single- 
Degree-of-Freedom Strapdown 
Gyros 

axis  errors  for motion about  axes @ or  @ are similar  to  those in 

the  previous  case. 

10.3.2 Closed Loop ~ Compensation  Using Corrective  Torquing 

In Section 10.3.1 no new feedback  loops  were  closed about the 
individual gyros themselves. Only manipulation of their outputs was 
performed.  The  compensation  approach  discussed  here, one incorporating 
corrective  torquing,  does involve the closing of new feedback  loops  about 
the  gyros. 

Employing the  linear  model of the gyro displayed  in  Fig.  10.3-1, 
consider  the  compensation  approach  in  Fig.  10.3-5,  indicating that a cor- 
rective  (error  compensation)  torque is applied to  each gyro. Since 
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Figure 10.3-5 Closed Loop Compensation  Involving 
Corrective  Torquing 

gyro (2) yields a direct  measure of the  rate  applied about the output axis 
of gyro (l), that signal is used  to  generate a corrective  torque which is 

applied  to  gyro (1) in an effort  to  cancel  the output axis error .  Since  each 
compensating  signal  depends  directly upon the compensated output of 
another  gyro, new feedback  loops a r e  closed;  corrective  torquing of 
this type is a form of closed loop compensation. Note that the output of 

gyro (2) is not a perfect  measure of its input;  consequently,  one would not 
expect this compensation  technique to  precisely  eliminate the OA er ror  

in (1). 
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Output Axis Error  Redudion - To  determine  the  effect of the 
closed loop corrective  torquing, the following transfer functions are 
calculated. 

A 

W 2 W  a [is- * = (s2 +bs +a) - (cs) a 
3 3 3  

- acs (s2 f bs) (s2 + bs +a) 

Z p =  2 
(s + b s + a )  - (cs) 3 3  a 

- a (cs) (s +bs) 

(s +bs+a) - (cs) 3 3  a 

2 2 2  
j3(s) 
g 3 =  2 3 

(10.3-6) 

(10.3-7) 

(10.3-8) 

Note that  the  magnitude of the  transfer function  expressed by Eq. (10.3-6) 
tends  to unity as the signal frequency  approaches  zero, while those 
expressed by Eqs.  (10.3-7) and (10.3-8)tend  to  zero. The transfer  charac- 
teristics  expressed by Eqs. (10.3-6),  (10.3”7), and (10.3-8) are plotted in 
Figs.  10.3-6,  10.3-7 and 10.3-8 as functions of frequency for the following 
set of representative gyro parameters. 

2 6 a = u = 10 sec -2 
n 

c = 1.25 x sec p = 0.707 (10.3-9) 

The quantity v is the  natural  frequency of the linear second  order  system 
representing the gyro and C is the corresponding damping ratio.  Assurance 

n 
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Figure  10.3-6 Magnitude and  Phase of Transfer 
Function Expressed in Eq.(lO. 3-6) 

PHASE ----- 
MAGNITUOE - 

0 

-A5  ;; 

-90 

-135 - 
w 
w 

0 

.I80 9 
0 
W 
v) 

0. 

- 225 

,270 

Figure  10.3-7 Magnitude and Phase of Transfer 
Function Expressed in Eq. (10.3-7) 
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Figure 10.3-8 Magnitude and Phase of Transfer 
Function Expressed in Eq.(lO. 3-8) 

that this particular  closed loop system is stable  was obtained by establish- 

ing that the  eigenvalues of the  system all lie in the left half of the complex 
plane for the values of a, b and c given in Eq. (10.3-9). 

In order  to assess the  value of employing this  compensation  tech- 
nique, refer  back  to  Fig. 10.3-1. The  uncompensated gyro transfer functions 

. relating  angular motion aboutinput  and  outputaxesto  indicated output are: 

a 
s +bs+a 

i i ( S )  -acs 
$4 = 2 s + b s + a  

(10.3-10) 

(10.3-11) 
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The  transfer  functions  expressed by Eqs. (10.3-10) and (10.3-11) are 
plotted in Figs. 10.3-9 and 10.3-10 for  the  same  representative  gyro 
parameters  used in Figs. 10.3-6 through 10.3-8. 

Now the  compensated  and  uncompensated  transfer  characteristics 

may  be compared.  The  transfer function relating  indicated input rate to  a 
rate about the output axis of gyro (1) (compensated) is expressed by 
Eq. (10.3-7). The  corresponding  uncompensated  transfer  function is given 
by Eq. (10.3-11). Examination of Figs. 10.3-7 and 10.3-9 show that the 

corrective  torquing has the  greatest effect in  reducing output axis e r r o r  at 
frequencies less than  about 110 Hz, the range in which most  vehicle motion 

usually occurs. Note there is essentially  no  improvement at higher fre- 
quencies, and that  the  compensation  does  introduce  some  peaking at the 
frequency  range 110 - 270 Hz. The  price  paid  for  this benefit is seen by 

examining  Figs. 10.3-6 and 10.3-10 where  the  response of compensated and 
uncompensated gyros  to  angular motion about  the input axis are plotted. 
Note that  while  the  compensation  significantly  reduced er rors  due to  OA 

angular  acceleration  (except  for  some  peaking between 110 - 270 Hz), the 
compensated input axis transfer function has been  modified;  specifically, 
a resonance  peak  occurs in the  range 100 - 190 Hz. Nevertheless,  for the 
range of frequencies up to about 100 Hz, the input  response is unchanged. 

Examination of Fig. 10.3-8 shows that an e r ror  due to motion 

about the input axis of gyro (2) is introduced  into  the output of gyro (3) when 
the closed loop compensation is employed,, This can be a source of system 
drift rate; examination of Figs. 10.3-6 and 10.3-8 reveals that in the fre- 
quency range 0 - 100 Hz, where the majority of the  power  associated with 
vehicular motion is likely to  be  concentrated,  the  relative  phase between 
er rors  introduced  in  gyro (3) and motion sensed by gyro (2) will produce 
pseudo  coning errors.  However, comparison of Figs. 10.3-6,lO.  3-8,lO.  3-9 

10-20 



PHASE ----- 
MAtNlTUOE - 

FREQUENCY (MI 

Figure  10.3-9 Magnitude and Phase of the  Transfer  Fundion 
Expressed in Eq. (10.3-11) 
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Figure 10.3- 10 Magnitude and Phase of the  Transfer Function 
Expressed in Eq. (10.3-10) 
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and 10.3-10 indicates that, for motion occurring at frequencies below 100 Hz, 
the  error  introduced by compensation is significantly less than that which 
would result if no compensation were used.  Therefore,  for the situation 
treated  here compensation  affords a decided  benefit to  system  performance. 

Study of these  transfer  functions  shows  that  for  gyros with a 
large  uncompensated bandwidth, closed loop compensation of output axis 
dynamic error  tends  to  destabilize  the  system.  This may be  seen by 
dividing the characteristic equation associated with Eq. 10.3-6 by a3 and 
letting a approach  infinity.  The  result is, in the limit,  the  third  order 

equation 

1 - (cs)  = 0 3 (10.3-12) 

Equation  (10.3-12) has one root  in  the  right half of the  complex  plane,  indi- 
cating an unstable  system  for  large  values of a. This  observation  leads  to 
the conclusion that not all gyros may be  compensated in exactly this manner. 

Additionally, the damping  ratio, [, associated with each gyro 
must  be  near  critical  in  order that compensation be effective.  This is 

demonstrated by expanding the  characteristic equation of the  closed loop 

system as follows: 

(10.3-13) 

As b vanishes the  coefficients of several of the  powers of s in Eq. (10.3-13) 

tend to zero. A necessary condition for all the roots of Eq. (10.3-13) to lie 

in the  left half of the complex  plane is that all the coefficients  must  be of 
the  same sign and  non-zero (Ref. 15). Therefore  for  fixed bandwidth and 
a given value of c, reducing  b  alone  (equivalent to  reducing c ,  the damping 
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ratio)  tends  to  destabilize the compensation. It is not easy  to  determine 
the  necessary  and  sufficient conditions on a and b such that for a given c 
the system is stable,  because  to  do so involves  finding the region  in 
a-b space which satisfies six inequality constraints  (most of which are 
nonlinear). Rather, it is simpler  to test system stability when a, b, and 

c are specified. 

10.3.3 Closed Loop "" . . . - Compensation  in a Computer 

It was noted that new feedback  loops were  closed in the cor- 
red ive  torquing  compensation  technique of Sedian 10.3.2. However , if 
other  considerations  restrict the electrical  interconnection of gyros,  or 
if it is desired  to employ only external data processing, then the digital 

computer which is employed for system  attitude computation may be 
used  to  implement  closed loop compensation. By this it is meant that new 
information  loops are closed  via the computations  executed within the 
computer itself. 

Decoupling Filter - One may postulate  the  existence of a filter 

(implemented  digitally) which decouples  the e r ro r s  produced by angular 
motion about the output axis of an SDF strapdown gyro. To  illustrate, 
assume that the three gyros of Fig. 10.3-2 are identical in all respects and 

that the total  package is subjected  to  angular  oscillations  about the input 
axis of each gyro. Treating output axis e r ro r s  only and employing the 

simplified  mathematical  model of gyro transmission  characteristics 
illustrated in Fig. 10.3-1 , one may write 
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'where j - is the vector of measured input rates, and 0 - is the  vector of true 
input angular rates. The  presence of the off-diagonal terms in Eq. (IO. 3-14) 

reflects the e r rors  in measured rates caused by output axis angular  accel- 
eration.  Because it is desired  to  extract w - from - j (i. e. reconstruct the 
true input signals exactly), one can postulate a set of calculations which 

solve Eq. (10.3-14) for w - in terms of G. - The  result is 

where 

D(s) = 1 - (CS) 
A 3 

Several  important  conclusions  can  be  drawn by examining 

Eq. (10.3-15). Inspection of D(s) shows that the  characteristic polynomial 
of the  filter is not  Hurwitz, i. e. , the  dynamics of the  filter are unstable. 
In addition,  the  instability is independent of the dynamics of the gyro, so 
long as the  gyro is modeled as a stable linear system.  This  result,  using 
similar analysis,  was  reported in Ref. 16. The fact that the decoupling 
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filter described  turned  out  to  be  unstable  indicates that it is not  possible 
to  eliminate OA e r ro r  by  employing  just the three identical  gyros of 
Fig. 10.3-2. Rather one  must be satisfiedwith  trying to reduce the effects 
of OA er ror ,  with no hope of completely  eliminating it. 

Output Er ror  Reduction - The open loop compensation of Fig. 10.3-3 
llustrates that uncompensated  signals are employed to  correct  other  such 
signals. It would appear  worthwhile to  utilize the corrected signals in 
Fig. 10.3-3 to modify the  other  corrected  signals,  recognizing that this will 

:ause new feedback  loops to be closed.  The  change to Fig. 10.3-3 is 
lepicted in Fig. 10.3-11, where only the  modification is illustrated, 

I - I70I 

COMPENSATION 
""" --- 

Figure 10.3-11 Unstable Closed Loop Compensation 
in a Computer 
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While at first this might appear  to be a reasonable  approach  to 

closed loop compensation,  closer  examination of the correction loop shown 
indicates it is unstable.  That is, the characteristic equation of the cor- 
rection loop is given by 

1 - (cs) = 0 3 (10.3-16) 

which has one root in the  right half of the complex  plane.  This  approach, 
if it were  realizable, would provide  perfect  compensation.  The  instability 
of this formulation is equivalent  to that which was established  for the 

decoupling calculations  described by Eq. (10.3-15). Note that the present 

formulation is simpler than the decoupling filter in that the gyros are not 
within the compensation loop. 

Should the  compensation  approach of Fig. 10.3-11 be employed 

with just two gyros whose input axes are orthogonal, one would also  draw 
the  conclusion that the  correction loop is unstable. 

The structure of the  closed loop compensation of Fig. 10.3-5 

suggests  that it is possible  to  stabilize the correction loop of Fig. 10.3-11. 
Consider  Fig. 10.3-12 where  the  signal flow is the  same as in Fig. 10.3-11 

except that a dynamic  element with transfer function G(s)  is added into 
each of the  correction  signal  paths.  (Fig. 10.3-12 is compatible with the 
left half of Fig. 10.3-3). It can  be  noted that Fig. 10.3-12 is actually a 
rearrangement of Fig. 10.3-5; one sees that corresponding  transfer 

functions will be identical.  Consequently, all the observations  regard- 
ing  the  reduction of output axis error  in the  discussion of Fig. 10.3-5 apply 
here as well. We can conclude that this  form of closed loop compensation, 
while  not perfect,  affords  useful  reduction  in the propagation of e r rors  

due to  output axis angular  acceleration. 
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Figure 10.3-12 Stable Closed Loop Compensation 
in a Computer 

10.4 COMPENSATING  ANISOINERTIA  ERROR 

As discussed in Section 2.1, the  effective  anisoinertia e r ror  
torque  applied  about  the gyro input axis has two components. One 
is caused by the  inequality  in  moments of inertia of the gyro-gimbal e 
combination  about the spin  and  input axes;  the  other is produced by the 
failure of the  rotor  speed  control  to  maintain a constant  rotor  spin rate 
relative  to  the gyro gimbal.  Repeating  Eq. (2.1-9) we have 

anisoinertia 
error  torque = (Iss - Iii)WSWi + I "r 6nWi 

where 

I.. = rotational  inertia of the  rotor and gimbal 
11 combination  about  the input axis. 

(10.4-1) 

I = rotational  inertia of the rotor  alone about ss r the  spin axis. 
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rotational inertia of the rotor and gimbal 
combination  about  the  spin  axis. 

angular rate of the case about the  spin axis. 

angular rate of the case about the input axis. 

change  in rotor  spin rate relative  to  the 
gimbal. 

. The quantity 6 0  is related  to us by Eq. (2.1-8): 

9 

Note that this model  predicts an oscillatory  speed  regulator. In prac- 
tice the regulator is observed  to  be  very lightly  damped. Hence a more 

exact  model is given by the  expression, 

(10.4-2) 

where g is the  damping  ratio. 

The  effective  anisoinertia  torque cannot be  distinguished  from 

the  ideal  gyroscopic  torque and therefore it produces an e r ro r  in the  an- 

gular  velocity  indicated by the gyro, as illustrated in Fig. 10.4-1. The 
transfer function M(s)  = G(s)/H represents the assumed  linear  dynamics 
of the gyro  normalized by the value of H, and ii is an estimate of the in- 

put  angular rate ui0 The er ror  in & caused by anisoinertia  effects can 
be viewed as resulting  from  the  "error"  signal e in  Fig. 10.4-1, related 

to  os by 

A 
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where 

(10.4-3) 

ws I I 
I I 

I I 
I 

L """""""" ..I 

Figure  10.4-1  Block  Diagram  Illustrating  Effect of 
Anisoinertia  Torque on Gyro Output 

10-29 



As we observed in Chapter 2, in bxne circumstances it Is  possible  to 

design the gyro so that e is small. In particular, if w varies slowly, 
then 

S 

Ta(s) * T (0) = Iss-Iii a 

Hence the error  signal will be small if Iss = Iii. On the other hand if 

w varies  rapidly, 
S 

Ta(s) 3 T (a) = I - I.. a ss 11 
g 

and the error  will be small if  I z I.. . However, it is clear that the 
SSV 11 

design  parameters cannot be selezted  to  make  Ta(s)  identically  zero 
when us can take on a range of frequencies.  Therefore  techniques  for 
compensating  anisoinertia e r ro r s   a r e  needed. In this section,  methods 
which make use of the known relationships between the  error  torque, os, 

and oi are  investigated. 

* 

10.4.1 Closed Loop Compensation 

It is evident  from  Fig. 10.4-1 that the effective  anisoinertia 

torque can be estimated i f  estimates of ui and os are available and if 
Ta(s) is known. In particular, 

estimated  anisoinertia - A A  - W. e error  torque 1 

(10.4-4) 

where Ta(s) is a compensation  network  which has dynamic characteristics 

that closely  approximate  Ta(s). If the estimated  error  torque can be 

N 

* 
For  contemporary gyros, this  statement is true if  os has a 

bandwidth of more than 2 or 3 Hz. 
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I calculated in this  fashion, it can be subtracted  from the input to the gyro 
torquer  in  Fig. 10.4-1, thereby  approximately  cancelling the actual  error 
torque. A condition that must hold in  order that the gyro  outputs  be good 
approximations  to the actual  angular  velocities is that the compensated 
system  must  be stable -- io e. , the closed loop poles  should  be  in the 

left-half complex  plane. In general the global  stability  properties of the 
system are difficult  to  determine  because of the  nonlinear  structure of 
the  feedback  compensation, shown in  Fig,10.4-2. However some  insight  can 

' be gained  into system  behavior i f  the nonlinearities are linearized  about an 
operating condition that permits  local  stability  properties  to be investi- 
gated. 

e-A333 

To G y r o  Which 
Torque Signal 

Measures ws U 

COMPENATION 
FEEDBACK I 

Figure  10.4-2  Mechanization of Closed Loop Anisoinertia  Error 
Compensation  Technique  for a Single Gyro 
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A linear analysis of the  compensated  system is facilitated if 

the  following  assumptions are made  for  each of the three gyros: 

The  angular  velocities q and us 
are constant. 

0 i. = ;3i + 6ui where Gi is the  portion of w i  
produced by wi and the  error  torque  alone 
in Fig. 10.4-2. 

A 

1 

0 The three gyros are oriented so that each gyro 
input  axis  points in the same  direction as the 
spin axis of one other gyro. 

With these  conditions  imposed,  the  linearized  closed loop dynamics for 
the  propagation of small,  time-varying  errors in indicated  angular rates 
a r e  given in Fig. 10.4-3. The  subscripts  x, y, and z denote Gi and 6w. 

for each of the three  gyros.  The  local  stability  properties of the system 
can be  inferred by considering the locus of closed loop poles as a func- 

tion of the  net loop gain. 

1 

If we neglect the gyro  dynamics (that is, G(s) s 1) then  Fig. 10.4-3 
reduces to Fig. 10.4-4. If T’a(S) is made  identical to Ta(S),  the open loop 

poles in Fig. 10.4-4 are near the imaginary axis with an undamped natural 

frequency of JKh/IS, and r damping ratio [. From  Eq, (10.4-3) it fol- 

lows that the total loop gain in Fig. 10.4-4 is 

H3 

which can  have either a positive or negative  algebraic  sign.  Ordinarily 

the possibility of negative gain together with lightly  damped open loop 

poles would be a troublesome  situation  from  the  standpoint of closed loop 

10-32 



m x GYRO 
R - 4 3 Y  

el L GYRO 

4 
y GYRO 

Figure  10.4-3  Linearized Error Flow Diagram When Anisoinertia-Rotor 
Speed Errors are Reduced by Closed Loop Compensation 
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Figure  10.4  -4  Simplified  Linearized  Closed Loop 
System  Associated With Fig.  10.4-3 
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stability. However, the magnitude of this gain is very  small  for  typical 
values of input angular  velocity,  moments of inertia, and gyro angular 
momentum.  Hence, the closed loop poles are generally  quite  close  to 

the open loop poles. Using representative  parameter  values -- p = 0.0025, 

I.. = 600 gm-cm2, Is, = 600 gm-cm2, H = 4 . 0  x 105 gm-cm2/sec, 
11 

Kh = 1 .6  x io5  p-Cm2/SeC 2 , Is,, = 400 gm-cm2 -- we find that the sys- 
tem  remains  stable so long as 

1 0 ”  w” w” I < 1000 (rad/sec) 3 
X Y Z  

Input angular  velocities a re  not likely  to  exceed one radian  per second in 

most  applications so that the  closed loop compensation  technique  provides 
adequate  stability  margin in the linearized  system.  This  conclusion re- 
mains unchanged if the gyro design  assumptions are altered -- i.e., if 

Is, # Iii. It is emphasized that this  analysis treats only local  stability 

properties.  To  verify  system  stability  under  actual  operating conditions:, 
computer  simulation of the closed loop compensation  technique should be 

performed. 

If the three gyros are oriented as in Fig. 10.3-4,  where two 

spin  axes are parallel, the linearized  closed loop stability  properties 

a re  determined by the closed loop system shown in Fig. 10.4-5. If 
(s) = T (s) in this  case, we find by the same  argument  used  for  Fig. a  a 

10.4-4 that the  linearized  closed loop system is stable for all realistic 

input  angular  velocities. 

Having verified that the closed loop compensation  technique is 

at least  locally  stable, it is desirable  to  evaluate its ability  to  reduce the 

anisoinertia  error. To do this consider the set of three compensated 
gyros illustrated in Fig. 10.4-6, corresponding  to the orientation given 
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in Fig.  10.3-4. 
has  the  form 

To carry out the  analysis  we  shall  assume that Ta(s) 

. (10.4-5) 

ss r - 

R-4336 

Figure  10.4 - 5 

r 
Simplified  Linearized  Closed Loop System 
Associated With Fig.  10.3-4 

L - -" - - - """"""_ J 

Figure  10.4-6  Closed Loop Compensation  for  the  System 
Represented by Fig. 10.3-4 
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This  permits the compensation  network to have a damping ratio,,?; which 

is different  from  that of the rotor  wheel  speed  control loop  in the  event 
that it is necessary  to  damp induced transient signals or  to  suppress  the 
effects of noise. In addition, we shall assume  that the gyros all have 
identical  dynamic  characteristics and the input angular velocities are 
identical  sinusoids, 

9 = o = A sin  vt; i = 1,2,3 (10.4-6) 

where v is a constant  frequency.  The  most  harmful e r ro r s  in the esti- 
mates of a n g u l a r  velocity are those which are constant,  thereby  contri- 
buting a monotonically increasing  error in knowledge of angular  position. 
Consequently we are interested in determining  the  average  errors in 
ii(i = 1,2,3) and comparing  them with the e r ror ,  A u ,  which would exist 
if  no  compensation were applied. A measure of this performance is ex- 

pressed by the ratios 

(10.4-7) 

where the  overbars  denote  time  averages. 

It is clear  from Fig. 10.4-6 that the time  average  gyro  errors 
without comDensation are* 

* 
The  symbol, 4 Ta(jv),  denotes the phase  angle of Ta(jv)o 

10-36 



Thus the bias e r ro r s  at the outputs of the uncompensated  gyros are identical. 
With compensation,  the  largest  contributions  to the error in angular  velocity 
will be provided by the gyro  dynamics (which creates a difference between 
wi(s) and k ( s ) ,  for  example) and any mismatch between ?,(s) and Ta(s). 
Therefore, it follows from  Fig. 10.4-6 that  to first order 

i = 1, 2, 3 

Combining Eqs. (10.4-7),  (10.4-8), and (10.4-9), we have 

(10.4-9) 

T ) . = T ) =  
1 

i = 1,2,3 

(10.4-10.) 

TO  examine a representative  case, we assume the parameter 
values 

= I..  = 300 gm-cm 2 
ISS 11 

g 
I = 300 gm-cm 2 
ss r 

H = 4.63 x lo5 gm-cm2/sec Kh = 1.45 x lo5  gm-cm2/sec2 

r = 0.0025 A = 0.28  rad/sec 

a,s + 1 
G ( s )  = I 

4 3 b4s + b s  + b s 2 + b  s + l  3 2 1 

a1 = 0.143 

bl = 0.143 

b2 = 6.87 x 

b3 

b4 

= 1.20 x 10-6 

= 1.65 x 

(10.4-11) 
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Substituting  the  above  quantities  into  Eqs.  (10.4-3), (10.4-5), (10.4-.8), 
and (10.4-lo), we obtain  the  curves in Fig.  10.4-7  giving q and lAY1 as 
functions of the input frequency v and the compensation  network  damping 
ratio, (note that I Aho I is independent of f, and q is independent of the 

input  amplitude).. 

- 

The  parameter  values given above are chosen so that 

I -I.. = o  ss 11 
g 

Under this condition we see  from Eq.  (10.4-3) that 

lim  Ta(s) = 0 
S"00 

Thus the effectiveness of the compensation  network, as reflected by the 

parameter q, can be permitted  to  degrade with increasing  frequency; this 

is a convenient  condition from the standpoint of mechanization.  Observe 

from  Fig.  10.4-7(a) that the compensation  technique  should  reduce the 

anisoinertia  error by one to  three  orders of magnitude at frequencies below 
100 rad/sec in order  to  achieve an acceptable  error  level  (say  0.1  deg/hr), 
for the input amplitude given in  Eq. (10.4-11).  The curves in Fig.  10.4-7(b) 

indicate that for  large  compensation  damping  ratios,  insufficient  error re- 
duction is achieved at frequencies within the  range, 10 s v 5 100 rad/sec. 

Consequently it is desirable  to have the  compensation  network  damping 

ratio as close as possible  to that of the  rotor  speed  regulator. 

To obtain  further  improvement  over that achieved with 

= 0.0025 in Fig.  10.4-7(b), it will be necessary  to add compensation to  
N 

suppress  the  effect of the gyro dynamics, G ( j u ) ,  in Eq.  (10.4-10).  This 
possibility is investigated in more  detail in the next  section  for  the  case 

of open loop compensation. 
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Figure 10.4-7 Performance of Closed Loop Anisoinertia 
E r ro r  Compensation  Technique 
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The  above  discussion  indicates  the  amount of anisoinertia 
e r ro r  reduction  likely t o  be  achieved  with  closed loop compensation. 
From  the  standpoint of mechanization,this  technique  requires that a com- 

pensating  torque  signal be applied at the  input of each  gyro. In some 
applications it may  be more convenient  to apply all compensation at the 
gyro output, in an open loop configuration. This is investigated in the 

next  section. 

10.4.2 Open  Loop Compensation 

Open loop anisoinertia  error  compensation of a single  gyro is 

illustrated in Fig. 10.4-8. The  concept is similar  to that given in Fig. 
10.4 -2 except  that the estimated  anisoinertia  error  torque is converted 
to an estimated  error in angular  velocity, A i, which is subtracted  from 
the  gyro output.  Note that in order  to  generate  the  estimated  error  torque, 
a transfer function Ff',(s) is again employed. Just as in the case of closed 
loop compensation, we desire ?,(s) to be a good approxinfation  to  Ta(s). 

However,  exact  equality between the  two  transfer  functions may not be 
desirable  because  Ta(S) is very lightly damped. If there is any noise 

introduced  into the system -- e. g., gyro  quantization  noise -- then  the 
compensation  network  should  be  designed to  prevent  an  unacceptable  level 
of noise  amplification. In this discussion we shall  assume that Ta(S) and 
Fa(s) are given by Eqs. (10.4-3) and (10.4-5). To gain some  insight  into 
the  performance of this  compensation  technique, we consider its applica- 

tion to  a navigation system containing three  identical  gyros  oriented as 
shown in Fig. 10.3-4. This  case will also  provide a comparison with the 
closed loop compensation method discussed in the preceding  section. 

Another property of Fig. 10.4-8 is the  use of a transfer function, 
G(s), in the compensating  network that is not necessarily  identical  to M(s). 

10-40 



I 
I 
I 

Figure 10.4-8 Mechanization of Open  Loop Anisoinertia  Error 
Compensation  Technique for a Single Gyro 

In particular, it is expedient to  choose %(s) = 1/H to keep  the  compensa- 
tion  dynamics as simple as possible.  This  provides  adequate  reduction 
of constant and low frequency  anisoinertia e r ro r s  and avoids the additional 
computation  associated with the gyro dynamics. 

Applying the open loop compensation  technique to  the  system 
of gyros shown in Fig. 10.3-4, we obtain the configuration shown in 

Fig. 10.4-9. To  evaluate this  system we shall assume the same condi- 
tions on system  operation as in the  preceding  section -- namely, the gyros 
have identical  transfer  functions and input angular  velocities, as given 
by Eq. (10.4-6). The  system  performance will  be measured in terms of 
the ratio between average  angular  velocity e r rors ,  with and without open 
loop compensation, given by Eq. (10.4- 7). 

With the above  conventions  established, it follows from  Fig. 
10.4-9 that the calculation  for 1 A q  I, required  in  Eq. (10.4-7), is the 
same as in Eq. (10.4-8). The e r ro r  in ji when compensation is used is 
obtained in a manner  similar  to that used in the preceding  section. 
Neglecting te rms  involving the ratio A4/H3, 

- 

10-41 



Figure 10.4 -9 Open  Loop Compensation  for  System 
Represented by Fig. 10.3-4 

i = 1,  2, 3 (10,4-12) 

Thus Eq. (10.4-12) is the  same as Eq. (10.4-9); the ratio qi(i = 1 ,2 ,3 )  

defined in Eq. (10.4-7) and evaluated  for  the  case of open loop compensa- 
tion is the same as in Eq. (10.4-10). From  the above discussion it is 
clear that the curves  for q in Fig. 10.4-7 also apply for open loop com- 
pensation; within the  accuracy of the  approximations  used here, open loop 
and closed loop compensation  provide  identical relief from  anisoinertia 
errors.  Therefore it is recommended that onen loon comnensation be 
employed in order  to avoid the  question of whether the  system  using  closed 

loop compensation in Fig. 10.4-6 is globally ~ ~ stable. .. 

.~ ." ." _____" ~ . .~~ 

We observe  from  Fig. 10.4-7(b) that when = = 0.0025, there 

is a remaining  anisoinertia  error  caused by the fact that gyros are not 
perfect, i.e., G(jv)# 1, just as there was for  closed loop compensation. 

The magnitude of the gyro transfer function specified in Eq. (10.4-11) is 
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Figure 10,4-10 Amplitude-Phase  Characteristics 

for G ( j 2 ~ f )  in  Eq. (10.4-11) 

plotted in Fig. 10.4-10. Over the frequency  range shown the amplitude 
curve has approximately  second-order  characteristics; that is 

2 
U 

G ( s )  2 
g 

2 
s + 2 p  v s+v 2 

g g  g 

where r and v are chosen to provide a good approximation  to  the  curve 
in  Fig. 10.4-10. If it is necessary  to  achieve  additional  reduction in the 
anisoinertia  error, some means of compensating for the  gyro  distortion 
must  be  provided. One method of accomplishing this  is to insert 
compensating  networks G,(s) at the inputs  to the compensation  network in 
Fig. 10.4-9, having  magnitude characteristics which a r e  approximately 
the inverse of that shown in Fig. 10.4- 10. For  example, 

g g 
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where Q! and 0 are chosen  outside the frequency  range of interest and K 

provides a d-c gain of unity, 

This  choice of gain yields  undistorted low frequencies at the expense of 
amplifying high frequencies in the  compensation  network.  Implementa- 
tion of such  compensation  imposes an additional  computational  burden on 
the  system; it should only be  used if  the e r ro r  reduction  indicated in Fig. 
lO.4-7(b) is not adequate. Note that the same modification can be  applied 
to the closed loop compensation  technique in Fig. 10.4-6. 

Effect of Noise - A conclusion of the earlier analysis is that 
the open loop anisoinertia  compensation  can be made to  perform  better by 
choosing Ta(S) closer  to  Ta(s),  This  observation  confirms  our  expectations 
in the  case  where the gyros introduce no extraneous signals into the angu- 
lar velocity  measurement.  However, we pointed out earlier that in a 

practical gyro additional error  signals are generally  present that may 
adversely  effect  compensation  accuracy,  particularly if !?a(s) is too  lightly 

damped.  To  model this situation, we shall assume that the gyro-induced 

e r ro r s  can be represented as an additive  term,  ni(t), at the output of each 
gyro, as illustrated in Fig. 10.4-11. If we assume that each  gyro  error is 

a zero-mean  gaussian  random  process, a convenient measure of its effect 
on the  system output is the mean square  value of the corresponding  random 

component  added to w. by the Compensation network.  This  quantity, denoted 
by ai, represents  the  strength of the noise added to the angular  velocity 

estimates by the open loop compensation  technique. To  analyze the effect 
of gyro noise we shall treat the most  pessimistic  case; all the signals  ni(t) 
are identical -- i. e., ni(t) = n(t)  for all i. Consequently ai 2 2  = CT is the 
same  for  each gyro output. 

2 1 
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Figure 10.4- 11 Open  Loop Compensation  for  System 
Represented by Fig. 10.3-4, Including 
Gyro-Induced Errors  

If we assume that the spectrum of the noise input is f l a t  having band- 
width B (in units of rad/sec), which is large  compared with the bandwidth 

of Ta(s), and i f  

(10.4-  13) 

then it can be  shown from  standard power spectral  density  analysis  tech- 
niques that 

2 2 
CJ = - 'ITq ?va (Iss -Iiiy (1 + - 1 

4r2 B H'B 
(10.4-14) 

where we have set Iii = I and v is the undamped natural  frequency of 
ssg a 

Ta(s), 

u a =/rT (10.4-  15) 

A figure of merit  for the operation of the compensation  network 
with respect  to the noise  input is defined by 
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which represents the fractional  increase in the rms  measurement  noise 
in w. (i = 1 , 2 , 3 )  due to the compensation  network.  For any application 

of interest, one  can plot p as a function of t. Note that as the latter 

approaches  zero, p approaches  infinity as expected.  However,for  the 
representative  parameter  values we have been  using in this  investigation, 
(Eq. (10.4-11)), if we set = = 0.0025 and assume a conservatively 

narrow  noise bandwidth of 10 Hz, it follows from Eq. (10.4-16) that 
p 2 0.01. Since there is no  motivation to  choose < C, we conclude that 
the anisoinertia  compensation  does not introduce  appreciable  noise  am- 
plification in most  situations of interest.  Consequently  for the application 

A 

1 

considered  here, we can safely set T'a(S) = Ta(s), 
reduction in average  anisoinertia  error  predicted 
1004-7(b) corresponding  to = [ = 0.0025. 

thereby  achieving  the 
by the curve in Fig. 

Simulation  Results - To obtain  verification of the performance 

characteristics given in Fig. 10.4-7(b), a computer  simulation of the sys- 

tem in Fig. 10.4-1 1 was performed  including a detailed model of the  
single-degree-of-freedom gyro dynamics and nonlinear  torquing loop. 

The gyros use a time-modulation  pulse-rebalance  torquing  method;  most 

of the  model  parameters were taken  from  the  specifications frw the 

Hamilton  Standard R I  1170 gyro. Moments of inertia and inp1.d frequency and 

amplitude were specified as in Eq. (10.4-11). Because the gyro output 
is digital,  the  compensation  network  Ta(s) was implemented as a digital 
filter. The latter was constructed  assuming = 5 and neglecting the zero 
in the  numerator of Eq. (10.4-5). Three  different input frequencies in 
the low, resonant, and high frequency  regions of the  compensation  network 

- 
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were applied; v = 6.13,  21.2, and 49.0 rad/sec.  The  system output, GI, 
was averaged  over 4,10, and 20 periods of the input frequency  respectively 
and the resulting  values of r)  are given in  Fig. 10.4-12; the theoretical 
curve  for f = 0.0025 from  Fig, 10.-4-7(b) is shown for  comparison. 

F 

- THEORETICAL 

A SIMULATION 

10" 

10-2 

1 10 10 io3 
INPUT FREQUENCY, v (rod/sec) L 

Figure 10 4- 12 Evaluation of Open Loop Anisoinertia 
Compensation by Computer Simulation 

The  differences between the simulation  results and the theo- 
retical  curve arise from a combination of causes. First, the gyro dy- 

namics  acting on the input  angular  velocity  cause a transient signal in 
the output of the lightly damped  compensation  network  Ta(S) which is not 
identical  to the transient signal from the rotor  wheel  speed  regulator. 
Consequently, 2, contains a transient  error  signal. Secondly, the time 
interval  over which is averaged is not equal  to a multiple of the 

transient signal period, and the interval is too  short  to  "average out'' 
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the  transient signal. However, the simulaticm results  verify that reduc- 

tion of anisoinertia  errors is possible  using open loop compensation  and 
that the amount of reduction  can  be  predicted  analytically. Also, as we 

have  pointed out, additional  improvement can be  obtained by accounting 
for  the  effects of gyro dynamics. 

10.5 SUMMARY 

Several  concepts of open loop and closed loop compensation of 
dynamic e r ro r s  in  single-degree-of-freedom  strapdown gyros have  been 

presented. It was shown through  simulation that crosscoupling e r ro r s  
can  be  substantially  reduced in a set of three orthogonal gyros employing 
closed loop compensation.  Analyses were also  performed which indicate 
that output axis angular  acceleration  errors  can be  reduced in a set of 
three orthogonally mounted gyros,  using  either open loop or closed loop 

compensation. In the latter work, a simplified  mathematical  model of a 
strapdown gyro was employed to  make  the analysis tractable and 
e r ro r s  introduced by differentiation were ignored. Both compensation 

techniques were found to  be  effective  over a useful  frequency  range, up 
to about 110 Hz, when representative  gyro  parameters  were  used. 
Finally, it was demonstrated that both closed and  open loop compensation 

can be employed to  reduce  misoinertia  errors.  The question of system 
stability cannot be answered with full satisfaction  for the closed  loop 

anisoinertia  compensation;  because of nonlinearities only conditions  for 

local  stability  have been  obtained,  Since the e r ro r  reductions  achieved 
with closed and open loop techniques are the same  to first order, it is 
recommended  that the latter be used to avoid the possibility of unstable 
operation.  The  performance  prediction  for open loop  compensation was 
verified by computer  simulation. 
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11. SUMMARY AND CONCLUSIONS 

11 ,, 1 SUMMARY 

The  research  reported in this document has as its goal 
investigation of motion-induced er rors  in strapdown inertial navigation 
systems and the  development of techniques  for  reducing  those errors   to  
an  acceptable  level.  Initially, detailed e r ro r  models for single-degree- 
of-freedom gyros and accelerometers  were  developed.  The motion- 
induced e r ro r s  in these two sensors  were  discussed in some detail, par- 
ticularly with regard  to their source within the instrument and the motions 
that produce  them.  The  progression of sensor-level  errors into  system- 
level drift rates and acceleration  errors was discussed and the means by 
which seemingly innocuous gyro and accelerometer  errors are translated 
into  serious  system  errors were illustrated. 

The  potential  harm  caused by interactions between  strapdown 
sensors and the rigorous motion environment  to which they a re  subjected 
was demonstrated at two levels of complexity.  Simple  calculations involv- 
ing a set of representative  strapdown  single-degree-of-freedom  gyros and 
a control  system  limit  cycle  indicated  several  sources of motion-induced 
drift rates in excess of 1 deg/hr. Also, using a complex  computer  pro- 
gram  developed  during the series of investigations this document  sum- 
marizes, motion-induced  strapdown system  errors  were calculated  for a 
measured  helicopter  environment. In the latter case the vibration  en- 
vironment was described by a set of 36 spectral  density  functions  measured 
during  flight.  It  was shown that the particular  strapdown inertial system 
analyzed will generate  system-level  drift rates of magnitude in excess of 
0 , l  deg/hr -- considerably  worse than current  platform  systems. Using 
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the  helicopter  vibration  data and the  same set of inertial  sensors, the com- 
puter  program  was employed to compare  strapdown  system  accuracy with 
the  gyros  in  the  torque  balanced and single-axis-platform (SAP) modes. 
The  results showed that two major  sources of' system  drift rate are elim- 
inated when the  gyro is used in the SAP mode.  However, the net  drift 
rate still exceeds 0.1  deg/hr  about two system  axes. 

One of the  goals of the research  reported  here was the develop- 

ment of -techniques  for  analytically  predicting  strapdown  system  errors, 
so that the impact of changing various  sensor  parameters can be evaluated 
without having to build and test actual  instruments. One significant ob- 
stacle  to  such  analyses  existed at the start of this work. Most strapdown 
gyros and accelerometers employ nonlinear  pulse  torquing  techniques, 

and their closed loop behavior cannot be treated with the wide range of 
analytic  tools developed for  linear  systems.  Describing function techniques 
were employed to  provide  approximate  methods  for  analyzing the behavior 
of strapdown inertial sensors and systems.  Furthermore, the results 
predicted by analysis  were  compared with detailed  simulations of the 

sensors and close  agreement was observed in almost all cases. AS indi- 
cated by the  describing function treatment,  ternary-rebalanced  instru- 
ments  exhibit a nonlinear  behavior while the binary and time-modulation 

torqued  instruments can, with appropriate  calculations, be viewed as 
linear loops  over a wide range of inputs.  Responses  to both sinusoidal 

and random  inputs were investigated. 

When the way was clear  to  analyze  the  effects of instrument 
parameters on system-level  errors,  several  simple  examples of param- 
eter optimization were worked.  The results  indicate that if  a rather 
free choice of gyro  parameters is available  sizeable  reductions in 

system-level  errors can be achieved by proper  parameter  selection. 
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Unfortunately several of the changes  suggested  to  optimize  the gyros 
studied would prove  impractical i f  carried out to the extent  indicated by 
analysis. When broad  practical  limitations  were  placed on the range of 
parameters  available it was found t hat the e r ro r  reduction  achieved may 
be unsatisfactory; the major motion-induced e r ro r s  in strapdown systems 
using  single-degree-of-freedom gyros and accelerometers  result  from 
characteristics of these instruments which are basic  to their operation. 

Since parameter  optimization,  per se, was found to be a doubtful 
way to  achieve good strapdown  system  accuracy  another  technique,  active 
compensation, was explored. Using measurements of the motion environ- 
ment and having accurate knowledge regarding the major  causes of sensor 
and system  errors,  the  error  torques on the instruments can be computed 
and the e r ro r s  can  be removed  from the system at one of several  places. 
Active  compensation of three major  sources of motion-induced system 
drift rate -- anisoinertia, gyro crosscoupling and pseudo-coning -- were 
examined.. Both feedback and feedforward  compensation were discussed 
and it was determined that outputs  from the basic gyro triad can be used 
to  reduce motion-induced e r ro r s  by at least an order of magnitude. This 
technique,  together with careful  selection of gyro parameters can be of 
major  value in bringing  strapdown  system  accuracy  to the level of gim- 
balled systems. 

The  work  summarized in this report has established and veri- 

fied a number of analytic and computer  techniques  for  strapdown  sensor 
and system  design.  Their  use will enable the guidance engineer  to side- 
step all but the final  steps  in  fabricating and testing a high accuracy 
strapdown inertial navigation  system. 
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11.2 CONCLUSIONS 

This  report  traces the development of analytic  techniques  for 
computing the  effect of the  strapdown  system motion environment and the 
investigation of several  means  for  reducing  the  impact of motion-induced 
e r r o r s  on system  accuracy.  The  major  conclusions of the  research are 
as follows : 

0 Motion-induced error  torques in single-degree- 
of-freedom (SDF) strapdown gyros and accelerom- 
eters can cause  errors in strapdown  inertial  navi- 
gation systems which are considerably  larger than 
those in contemporary  gimballed  navigators . 

0 Strapdown gyros operating in the Single-Axis- 
Platform (SAP) mode are less  prone  to motion- 
induced error  torques. Two factors  related  to 
the SAP mode help  reduce e r ro r s ;  the gyro is 
essentially  isolated  from  angular motion  about its 
input axis and it is operated as a null-seeking  device, 
eliminating  torquer  scale  factor  errors. However, 
failure  to  isolate the gyro from  angular motion 
about its output axis allows a major  source of 
system-level  error, pseudo-coning,  to  remain and 
the  magnitude of system  errors when the  gyros a re  
in the SAP mode may still be  unacceptable. 

0 Proper  selection of single-degree-of-freedom  sen- 
sor parameters can improve  strapdown  system 
accuracy  in  most  cases, but the degree of e r ror  
reduction may not be satisfactory.  This  stems  from 
the observation that the major  causes of motion- 
induced error  torques  in SDF gyros and accelerom- 
eters  are  related  to  essential  parameters of the 
instruments  (e.  g.,  pendulosity,  gimbal and rotor 
inertias, etc, ) rather than imperfect  construction. 
Consequently,  large  reductions in sensor  error  tor- 
ques cannot  be  achieved without changing the under- 
lying mode of operation of the device. Even 
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moderate  parameter  changes (i. e.,  reducing  gimbal 
output axis moment of inertia) may be counterpro- 
ductive and raise other  error  sources  to  serious 
levels. 

0 Active  compensation,  using the outputs of the basic 
strapdown  sensor triads, can be  used  to  reduce the 
effects of the three major  causes of motion-induced 
gyro e r ro r s  -- crosscoupling,  anisoinertia, and 
output axis inertia. The  errors  generated by angu- 
lar motions up to  100 Hz can in each  case be reduced 
by at least an order of magnitude.  Active compensa- 
tion  can take two basic  forms -- closed loop or feed- 
back  compensation and  open loop or  feedforward 
compensation.  The  former  appears  to have no dis- 
tinct  advantage  over  the  latter and the stability of the 
closed loop compensation  approach is often difficult 
to assess. 

0 Describing  functions  provide a good technique  for 
performing  approximate  analyses of the  closed loop 
behavior of pulse-torqued  inertial  instruments. 
Response  to both sinusoidal and random  inputs was  
investigated and the  results of analyses  were well 
borne  out by detailed  simulations. 

0 While describing  functions  proved  very  useful in 
analyzing  the  response of ternary  torqued gyros, 
the process of analysis is somewhat more complex 
and less  rewarding in this case.  The  ternary gyro 
response is nonlinear and highly dependent on the 
magnitude of the input signal.  The gyro loop 
tends  to exhibit ambiguous  behavior  over  certain 
ranges of input frequencies  and/or  amplitudes. 

0 It has been demonstrated  in the course of this work 
that the. size of motion-induced e r ro r s  at the system 
level can be calculated without undue difficulty and 
that these e r ro r s  can be related to  certain gyro, 
accelerometer and computer  parameters  for a given 

11-5 



motion  environment.  The  analytic  developments 
treated in this report  enable the designer  to 
select  sensors  or  sensor  parameters and compen- 
sation  to  meet the system  accuracy  requirements 
without going through an iterative  process of 
fabrication and testing. 

Finally, several  problems related to the work  described herein 
remain  largely  untreated. Further work is needed to  explore  the  value of 
in-loop  compensation  to  improve the response  characteristics of strap- 
down inertial sensors.  This is particularly  true  for ternary gyros, whose 
high frequency  behavior in the absence of compensation is unsatisfactory. 
When the value of in-loop  compensation is established  for all three  pulse 

torquing  techniques, a clear-cut  choice between the different  approaches 
may emerge. Also, the role of different  attitude  update and navigation 
algorithms should  be investigated  further They  have a definite impact 
on the transmission of gyro e r ro r s  into the system  calculations and the 
conversion of oscillatory  sensor  errors into serious  system-level  errors. 
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APPENDIX A 

MOTION ~NDUCED ERROR TORQUES FOR THE 
SmGLE-DEGREE-OF-FREEDOM GYRO  AND 

~~ kENDUmUS ~ ~~ ACCELEROMETER-\ 

A.l GYROS 

A. 1.1 Angular Motion 

The single-degree-of-freedom gyro float  torques  caused by case 
angular motion are derived  herein. We begin by noting that the inertia 
torques on the  float  assembly (i.e., gimbal  plus  rotor) can be found from 
the expression 

dH 
-f M = (2) 

I 
(A. 1-1) 

where M represents  external  (non-inertial)  torques  and the right  side of 
Eq. (A. 1-1) is the rate of change in angular  momentum of the float, rela- 
tive  to  inertial  space.  Rewriting this equation  relative  to  the  gimbal co- 
ordinate  frame  using the law of Coriolis  yields 

-f 

(A. 1-2) 

where gIG is the  angular  velocity of the gimbal with respect  to  inertial 
space. At this point we adopt  the notation of subscripted  square  brackets 
to denote  the  frame  in which vectors  are  expressed.  Thus,  writing  com- 
ponents of all vectors of Eq. (A. 1-2) in the  gimbal (G) frame*  yields 
* 
Note  that  the  float and gimbal  coordinate  frames are identical  in  this 

discussion.  The  expression ''float" is used to  represent  the  physical 
system composed of both gimbal and rotor. 
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Continuing, note that the  angular  velocity of the gimbal with 
respect  to inertial space can  be written as the  vector  sum of the angular 
velocity of the  case with respect  to inertial space  and  the  angular  velocity 

of the gimbal with respect  to  the  case,  viz: 

(A. 1-4) 

Figure A. 1-1 illustrates the geometry of rotor,  gimbal, and case, including 
possible  misalignment of the rotor  relative  to the gimbal (6) - and the  gimbal 
relative  to  the  case (a). - With the  exception of aO7 all other  components of 

- a and - p are assumed  constant.  Let the quantities 6, G, and 4 denote  unit 
vectors  along the 0, s, and i axes, respectively, with the obvious exten- 
sions  to  the  primed  coordinate  systems.  The  required  terms in Eq. (A. 1-4) 

can now be written as : 

[.C.], = boG' (A. 1-5) 

and 

[%,IG = [ ~ 1 c ] , - ~ ~ [ ~ 1 c ] ,  (A. 1-6) 

where the  right  hand  side of Eq. (A. 1-6) is ultimately  expressed in the G 

frame. If we define 

(A. 1-7) 
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I (spin) 

A 

I - J A b I  

R (Rotor ) 

Figtire A. 1-1 Exploded View of Single-Degree-of-Freedom 
Gyro Showing Small  Misalignment  Angles, 
- a a n d  - 

then it follows that 

c ... 

= (wo-cyswi+aiws 0 + w +a w.-cY.w s + w . - a  0 +a 0 ( s  0 1 1 0  Y' ( 1  0 s s 0 )P 
(A. 1-8) 

The angular momentum of the  float  assembly can be written as 
the vector dot product of the float  moment of inertia tensor  (second-order 
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tensor   or  dyad) and the angular vcEocity of the gimbal with respect  to in- 

ertial space.  The  float  angular  momentum (Ef) can be written as the vec- 
tor  sum of the gimbal  angular  momentum (H ) and the rotor  angular 

momentum (Er), viz: 
"g 

(A. 1-9) 

Operations with the moment of inertia  tensor  yield 

(A. 1-10) 
where 

(A. 1-11) 

bog, etc., are the gimbal  moments of inertia and bs , etc., are the gim- 

bal products of inertia.  For  the  rotor we write (where R is the  rotor  frame) 
g 

(A. 1-12) 

where, as before, the right hand side of this  equation is ultimately  resolved 

in the G frame. Also, 

(A. 1-13) 
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where, in principal axes, we get: 

-0 00 
I = I o1 

r r 
I = I  s" 

r 'r "s 

and 

I. = Iii i" (A. 1-14) 
-1 r r 

(A. 1-15) 

hz is the rotor speed relative  to the gimbal. 
S 

At this point it is possible  to  compute all of the basic  expressions 
of interest. The results are given below, with all calculations  valid  to first- 
order in small  angles.  Terms  comprised of products of inertia  multiplied 
by small  angles have also been dropped. 

(A. 1-16) 

[ 4  = [Ioo (h0+wo- aswi+cyiws)+ Ios (ws+cy u.) + Ioi wi 
G g 0 1  

g 

+I  SSr (as: Bowi- Bi (ao+ a) )  +IoorBi (tio+ wo)  - IiirB0Wi i 1 

(A, 1-17) 



where 

Io0 = Io0 +Io0 
g r 

ISS = 5 s  +ISS 
g r 

I.. = I.. +I.. (A.1-18) 
11 11 11 

g r  

Recalling  Eq. (A. 1-3) we get the following expression  relating  non-inertial 

torques about the  float output axis  to the angular  motions  experienced by 

(and  within)  the gyro: 

[My] , = Ioo(&!o+rjo)+(Iii-Iss)~swi-Hw. 1 + I  os 
0 g 

+ Ioi [ai+ w0wS]+Isig[ us- 2 2  oi ] + ab[ (Iss-Iii)(ws- 2 2  ai) +Hws] 

g 

+ [-(I ss -I..), 11 0 w s - H w  0 -I 00 &.I 1 +ai[ (I ss -I . .)w 11 0 w.+I 1 00 cj s 1 

(A. 1-19) 
where we have  used the definition 

H = I  ssr " s  

The interpretation of Eq. (A. 1-19) can be illustrated by focusing 

on the  term -Hwi, frequently  the only effect  considered when the angular 
motion environment is benign. The  equation  indicates that in the presence 

of an input angular rate w. a negative  torque with magnitude H a i  must be 
applied  to the gimbal output axis if the other  terms,  particularly  those  des- 
cribing  gimbal-to-case  relative motion (bo, Eo), are z,ero. If the gyro float 

is viewed as a torque  summation  device the inertia  reaction  error  torques 
constructively  applied  about its output axis, T ~ ,  are, from  Eq, (A. 1-19), 

1 
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+ISi ( w f -  W E ) + % [  (Iii-Iss) (us- 2 2  w i ) - k w , ]  
g 

(A. 1-20) 

A. 1.2 Linear Motion 

Gyro torques  produced by linear  case  accelerations  occur  in 
gimballed as well as strapdown  systems. For purposes of discussion, 
these  terms  are grouped  under  the  headings of Mass Unbalance and Linear 
Compliance. To be strictly  correct  the  error  torques  are  described  in 
terms of specific  force  rather  than  acceleration. 

Mass Unbalance - Mass unbalance  torque is caused by a dis- 
placement between the output axis and the  float  center of mass. The com- 
ponent  about the output axis can be expressed as 

A 

'e = rn([fIG x!) 0 '  
(A. 1-21) 

where  m is the mass of the gimbal  and  rotor  combination, - 6 is the  vector 
of constant  displacement between the  gimbal-rotor  center of mass and  the 
output axis expressed in gimbal  coordinates,  and [f] is the  specific  force - G  
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vector,  similarly  resolved. * Since 6 in the gyro is very small the  addi- 

tional  terms  added by misalignment  between  the  gimbal  and  case  axes are 
ignored;  viz: 

- 

and  Eq. (A. 1-21) yields 

‘e = m kifs- 6 s 1  f.) (A. 1-22) 

There exists another  torque which,  although  not a mass unbalance term, 
is proportional t o  the first power of specific  force  along the output axis. 

Hence, it is included here. It is attributed  to  damping  fluid  thermal con- 

vection currents  resulting  from a temperature  gradient  and an accelera- 

tion field  along the output axis. For  uniformity with Eq. (A. 1-21) this 

term can be  written  in the form 

thermal convection - 
e r ro r  torque 

- m dofo (A. 1-23) 

Linear  Compliance - Consider the linear  compliance  matrix 

r 1 

I os K I  oi K 
(A. 1-24) 

where the first and  second  subscripts  denote the directions of deflection 
and  applied  specific  force,  respectively.  The  linear  compliance 

* 
Specific force is taken  here to be the  difference between  the linear 

acceleration with respect  to inertial space and that acceleration 
called  for by the net  gravitational  force;  symbolically, ”- f = a - G .  , 
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cbefficients  account  for the net  effect of both rotor  and  gimbal  deflection. 
Terms with the same  subscripts are called  direct-compliances, while terms 
with  different  subscripts are called  cross-compliances. " It follows  from 
the definition of the compliance  matrix that, for slowly  varying  inputs an 
additional,  acceleration-dependent  mass  displacement, 

- 6 = m[K]  - f (A. 1-2 5) 

occurs. As in the case of the constant  mass  unbalance, we compute the 

linear  compliance  torque about the float output axis in the form 

= m"[K. 10 f 0 f s +K. 1s f2+(K..-K s 11 ss )f.f 1 s -Ksofofi-Ksifi "I 
(A. 1-26) 

Observe that each of the terms  in Eq. (A.l-26) can produce a non- 
zero  average  torque  in the presence of linear  vibrations of the  same 
frequency,, 

It is to  be noted that, for high frequency  vibration  inputs, 
the  dynamic  counterpart to Eq. (A. 1-25)  must be employed. In this 

spring-mass linear compliance  system,  resonance phenomena are, of 
course,  encountered.  Discussion of these phenomena can be found in 
Ref, 5. 
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A.2 PENDULOUS ACCELEROMETERS 

Erro r s  introduced  in  the  single-degree-of-freedom (SDF) pen- 
dulous accelerometer are discussed below. Whenever  possible the e r ro r  
torque  mechanisms are related  to  those given for  the  single-degree-of- 
freedom  gyroscope in Section A. 1 

A. 2.1 Angular Motion 

The SDF  pendulous accelerometer is illustrated in Fig. A. 2-1. 
Two major differences between this representation of the  instrument and 

that presented  for the SDF gyro are obvious.  The  direction  perpendicular 
to  the output and  input  directions is called the pendulum (p) axis rather than 

R - 3 1 6 1  

p (  pendulum) 

t 

P' 

L 

Figure A, 2-1 Exploded View of Single-Degree-of-Freedom  Pendulous 
Accelerometer Showing Small  Misalignment Angle, - Q! 
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the  spin (s) axis. Also, the instrument is assumed  to  consist of only two 
basic  parts: a case  and a combination  gimbal  and  pendulum. The e r r o r  
torques  induced in the SDF  pendulous  accelerometer by angular motion can 
be expressed by modifying the equations  developed in Section A. 1. As a 
result of the instrument  model shown in Fig. A.2-1, all terms in 
Equation (A. 1-20) which involve Bo and Pi are dropped, and the subscript g 

is deleted  because the gimbal and  pendulum are considered as a single 
rigid body. The  subscript p is substituted  for s in the remaining  terms. 
Also,  since there is no  spinning wheel involved, all terms involving angular 
momentum, H, and the spin rate of the rotor  relative  to the gimbal, Os, 

are  deleted. The resulting  expression  for output axis torque  produced by 

angular motion is; 

7 e = -1 00 (6 0 +ho)+(I -1.. ) w w.+I 
PP 11 P 1 OP P 

(wowi- cj ) 

-Ioi (Gi+ w w ) + I  . ({- w; ) +ao (Iii-Ipp) (up- 2 2  wi ) 
0 P  Pl 

+Ly [(I -I..) w +I  h.] +ai[ (I ii -I pp ) w o w. - I  1 00 cj p ] (A. 2-1)- p pp 11 0 p 00 1 

Since the ideal accelerometer is insensitive  to  angular  motion, 
all of the  terms in Eq. (A. 2-1) must be considered as error  torques  in the 
SDF  pendulous  accelerometer.  However, as in the case of the SDF gyro, 
the first term, -I 5 together with any  damping torque  about  the  instru- 
ment  output axis, is usually  considered as part of the unavoidable sensor 
dynamics  and  included in any "ideal" SDF pendulous accelerometer 
model. 

00 0' 
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A.  2 .2  Linear Motion 

Error  torques  generated by linear motion (acceleration) of the 
SDF pendulous accelerometer can be  established  using  the  error  torque 

expression,  Eq. (A. 1-21). Fbr the accelerometer a significant  mass un- 
balance is vital  to  the  instrument's  operation  and  misalignments between 
the  gimbal  and  case  cannot  be  ignored when describing the specific  force 
in  gimbal  axes: 

(A.  2-2) 

Substituting  Eq. (A.  2-2) into  Eq. (A. 1 -21), the output axis torque in a 
pendulous accelerometer is given by 

1 

output axis torque = -m6 @.+a f - +aifo- aofi) (A. 2-3) 
P 1 OP 

The effect of linear  compliance on accelerometer  errors  can be 
illustrated by describing the center of mass  displacement as a function of 
specific  force: 

6 .  = m (K..f. +K. f +K.  f ) + 6f 
1 11 1 10 0 1p p (A.  2-4) 

Substituting  Eq. (A.  2-4) into  Eq. (A.  2-3) and recognizing that the term 
m 6; fi is the measurement  sought, an error  torque equation results: 

+m2 [K. f 2 +K. f f + f . f   - K  f . f  -K . f  
1P P 10 0 P i p   p o l o   p l i  
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APPENDIX B 

DETAILED CALCULATIONS O F  
VIBRATION-INDUCED  STRAPDOWN  SYSTEM  ERRORS 

A first step in devising  means  for  correcting  vibration-sensitive 
e r ro r s  in strapdown  systems is identification of the  error  sources that will 
predominate in a particular  environment. A convenient  approach is to  
derive  error  expressions that are functions of the linear and angular vibra- 
tions  experienced by the navigator  and determine average  error  values 
from the spectral  characteristics of this  motion. The development of this  

type of e r ror  analysis is presented  in this appendix,  along with a descrip- 
tion of a computer  program which calculates  error  values  from the spec- 
tral data. 

B. 1 ERROR  PROPAGATION  EQUATIONS 

General equations  for the propagation of e r ro r s  in a strapdown 
navigation  system are 

where 

(B. 1-1) 

(B. 1-2) 

i = inertial reference  coordinate  frame 

s = system  coordinate  frame 
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C: = transfor-tion  matrix: s frame  to i frame 

r. = inertial position of the  navigator 
-1 

- G = specific  force due to  gravity 

-s a = total navigator  acceleration  resolved  in 
system  coordinates 

os = total  navigator  angular rate resolved  in 
system  coordinates 

s1 = skew-symmetric  matrix  composed  from 
navigator total angular rate components 
about system  axes. 

S 

If the  vibrational  and  nominal  motions of the  navigator  are  considered 
separately, it is possible to isolate  the  vibration-induced  error  contribu- 
tions in these  expressions. 

b a = a  
- S  -nominal + ‘ s  ab 

b 
nominal s a = = S I  S 

S 
+ c O b C b  

where 

b = body coordinate  frame,  defining  actual 
orientation of the  navigator 

s = system  coordinate  frame, defining  nominal 
orientation of the navigator 

a = linear  vibration  vector,  resolved in body 
-b coordinates 

(B. 1-3) 

(Bo 1-4) 

q, = angular  rate  vibration  vector  resolved in 
body coordinates 
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'b = skew-symmetric  matrix  composed  from 
navigator  angular rate vibration  components 
about body axes 

c S  
= transformation  matrix  from  actual body 

frame  to  nominal body frame -- a func- 
tion of the  rotational  vibrations 

Assuming  the  nominal  motions are perfectly  sensed and substituting  these 
definitions  into  Eqs. (B. 1-1) and (B. 1-2) yields 

ac; = scs sz + cs 6 CsObCb 1 s  1 H b  ")I 
(B. 1-5) 

(B. 1-6) 

The  bracketed  expressions in these  equations  contain  those e r rors  induced 
by the vibration  environment. In perturbing  these  expressions, it is neces- 
sary  to  distinguish between the  true  vibrations  experienced by the  system, 
and  those  indicated by the  navigation  computer,  Accordingly,  the conven- 
tion  has been  adopted  that error  quantities are defined as the  difference 
between true and indicated ( * )  quantities. 

A 
6nb - - Ab - nb 

(B. 1-7) 

(B. 1-8) 

(Bo 1-9) 

(B. 1-10) 

(B. 1-11) 
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Substituting Eqs. (B. 1-9) through (B. 1-11) into Eqs. (B. 1-7) and (B. 1-8) 
and  eliminating  the  true  quantities  can  yield  the following expressions: 

s -  
(B. 1-12) 

Since the oscillations  experienced by the navigator are of. low amplitude, 

the  indicated  transformation  matrix  can be approximated as 

A = 1 + y  

A 

-% 
1 

'px 
A 

1 

(Bo  1-14) 

where 

t 
e '(t) = 5 fib dt , a skew-symmetric  matrix 

0 composed  from body 
angular vibrations 

Since a similar set of relations  applies for C:, the true value of the trans- 
formation  matrix, 

(B.  1-15) 
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Also,  because of the skew-symmetric  nature of C and C s .  b 
S b' 

6CE = - 6C' (B.  1-1 6) 

When Eqs. (B.1-14),  (B.  1-15) and (Bel-16) are substituted  into  Eqs. 
( B o l - 1 2 )  and (Bo  1-13), and terms which cannot  rectify  (products of three 
matrices)  are  eliminated, the following expressions  result: 

[ = 60b+M:'  0 b b  -6 6C" h b -  6abe'- 6C' ab+ h a b  6C' 

(B. 1-18) 

When only those  oscillatory  errors which rectify at the system  level  are 
considered Eq. (Bo 1-18) simplifies to 

] (Bo  1-19) 

The  complete set of navigation e r ro r  equations are then  obtained by sub- 
stituting  Eqs. (Bm1-17)  and (B.1-19) into Eqs. (B.1-5) and (B.1-6): 

6i: = 6CSa - 6G+CS + 6C'gb- 6C'6a ] (B.  1-20) 
-i 1 "s - -b -b 

6C: = 6CSsS 1 s  +C: [60b+2( t '  6 0 b +  actab- 6C'6nbjl (B01-21) 

B-5 



The computer  program is designed  to  calculate  average  values 

for  a variety of instrument-level  and  system-level error  sources  over an 

ensemble of vibration  time  histories.  All of these error   sources  can be 

described  in  terms of the bracketed  expressions  in  Eqs.  (B.1-20)  and 
(Bo 1-21). The  ensemble  average  error  values can  then be treated as con- 
stants  in a separate  error  analysis  to  determine  the  effect of vibrations on 
navigation  accuracy. 

A vibration which is rectified in the gyros or  accelerometers -- 
because of a mismatch of moments of inertia,  for  example -- is repre- 
sented  by the first term within the brackets of Eqs. (B. 1-20)  and (B. 1-21) 
respectively,,  Vibrations may also  excite  purely  oscillatory  errors in the 

instruments which are combined  in  the system  attitude or navigation  cal- 
culations with correctly  measured  vibrations  to  produce a rectified  error, 
These  system  level  errors are described by the  remaining  bracketed 

terms. The matrices C ' and 6C ' represent the actual and erroneously  in- 

dicated  oscillations  appearing  in  the  transformation  matrix.  The  terms 

involving these parameters  in Eq.  (B. 1-20) are known as sculling e r ro r s  

and  the  corresponding  terms in Eq. ( B J - 2 l ) a r e  identified as coning 'errors. 

A 

B. 2 VIBRATION SPECTRAL DATA 

Many serious vibration-induced e r ro r s  in strapdown systems, 

whether they  rectify within the instruments  or in the  system  attitude  and 
navigation  calculations, are functions of products of accelerations and 
angular  velocities. A typical e r ro r  can be represented as the function p(t) 

given by 

(B. 2-1) 
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where 

d = orthogonal data coordinate  frame in 
which the vibrations are defined 

w (t) = angular rate vibration  about the x data 
d X frame axis 

wd 
(t) = angular rate vibration  about the y  data 

Y frame axis 

K = a representative  error coefficient 

The  time-average  value of the e r ro r  p(t) is proportional  to  the  time- 
average of the signal product Udx(t) W d  (t). It can be shown (Refs. 18, and 19) 

that the time-average  value of a signal product is equal  to  the  integral of 
the real component of the appropriate cross spectral density. In this 

example, the relationship is given by: 

Y 

T 

T- -T -T 

The R subscript in Eq. (B. 2-2) denotes the real component of the complex 
number : 
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where 

and  the real and  imaginary  components are defined as: 

@I k7 Wd) - 
- the quadrature  spectral  density of 

o (t) and ad  (t) 
dX Y 

The  co-spectral  density  defines the frequency  content of the  in-phase 
components of ad  (t) and (t) which appear in the signal  product.  The 
frequency  content of the product of the  out-of-phase  components, for 
which a d  (t) is assumed  to  lead Odx(t) by 7r/2 radians, is defined by the 
quadrature  spectral  density.  The  time-average  values of many of the 
e r ro r s  considered  in this  analysis  are  functions of quadrature  spectral 

densities. In this example, QI(v7  adx, Wd ) would appear  in  Eq. (B.2-2) 
if K were  frequency dependent (if K had real  and  imaginary  components). 

X Y 

Y 

Y 

The shorthand notation shown in Eq. (B. 2 -4) is adopted: 

(B. 2-4) 

Also, a superscript  bar,  such as in p(t) for  example, will be used  to 
denote the average  value of a function. 

Many of the e r ro r s  defined in the computer  program are similar 
to  p(t) in that they involve products of angular  velocity  components.  Other 
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e r ro r s  are defined in te rms  of products of acceleration  components  or 
products of acceleration  and  angular  velocity.  Expressions  similar  to 
Eq. (B.2-2) are derived  to  determine the average  values of these e r ro r s  in 
terms of frequency  spectra.  The following relationships are useful  in 
determining the spectral data necessary  for  generating  error  values  in the 
computer  program.  The  cross  spectral  density of Wdx(t) and qy( t )  is 
given by: 

(B.  2-5) 

(B. 2-6) 

The order of the  argvments is imDortant in defining. the sDectral den- 
sitie s. 

If all the  possible  cross-products of acceleration  components, an- 
gular  velocity  components  and  products of acceleration and angular  velocity 
a re  considered, 36 frequency  spectra,  including all the  co-spectral  and 
quadrature  spectral  densities, are necessary  to  completely  describe the 

vibration  environment in three  dimensions.  These  spectra  are defined in 
Eqs. (B. 2-7), (B.  2-8) and (B. 2-9) in terms of representative  error  sources, 
which are proportional  to  products of angular  velocity  components,  products 
of acceleration  components and products of angular  velocity  and  accelera- 
tion  components  respectively.  The  symbols @, @and r represent the spec- 
tral or cross-spectral  densities which describe the vibration  environment 
associated with these three classes of error  sources and K1, K2 and K re- 
present  frequency-dependent e r ro r  coefficients common to  each  class. 

3 
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For convenience, Eqs. (B.2"7),  (B.2-8) and (B.2-9) are cast in terms of 
0 and a the angular rate vibration  vector and the linear vibration  vector 

expressed in the data coordinate  frame. In calculating e r ro r  values  in the 

computer  program,  however, it is necessary  to  transform the spectral 
densities  into  each  instrument  coordinate  frame. For example, if the 

rotational  vibrations  measured in the data frame are related to the  principal 

axes of the ith gyro  through an orthogonal  transformation  matrix Bgi: 

-d 4' 

w . = B  o 
gi -d 

(Bo  2-10) 
-1 

Errors which depend on angular motion expressed in the axis system of the 

ith gyro  can be computed  using  the  transformation 

(B.  2-11) 

Similar  transformations can also be  applied  to  express the acceleration 
data in sensor-fixed  coordinate  frames. 
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An example of error  sources which are proportional t o  both real 
and  imaginary  components of the vibration  spectral  densities is the gyro 
drift which can result  from coupling  between  angular motion  about the 
nominal  rotor  spin axis and a float  angle  generated by angular motion about 
the gyro input axis.  For a simple linear rebalance loop, the Laplace  trans- 
form of the float  angle is given by: 

(B. 2-12) 

where 

a = gyro output axis float G(s) = gyro  closed loop gain 

ai = angular  rate about the 
0 angle 

H = gyro  angular  momentum input axis 

K = signal generator gain K = torquer gain 
sg  tg 

It can  be shown that the  constant  vibration-induced drift rate is given by 

The  constant  drift rate is a member of the class of errors  described  in 
Eq, (B. 2-7) for which the  frequency-dependent e r ro r  coefficient is given 

bY 

In this case, the transfer characteristics of the gyro a re  included  in the 
error  expression and, assuming that there is a phase shift (the  imaginary 
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component GI(v) exists), the  quadrature  spectral  density QiS(v) contri- 
butes  to  the error value.  Other errors considered in this  analysis involve 
the  transfer characteristics of the accelerometer and  computer, as well 

as the  gyro. 

B. 3 COMPUTER PROGRAM DESCRIPTION 

The flow diagram in Fig. B. 3-1  identifies the major  elements of 
the  error  analysis  computer  program. A listing of the  program,  plus a 
brief  description of the  subroutines, is available  from  the  authors.  The 

inertial  instruments  listed on the diagram,  the Norden 1139 single-degree- 
of-freedom  gyro  and the Kearfott 2401 pendulous  accelerometer, were used 
in the  Lunar  Excursion Module Abort Sensor  Assembly.  The  more  signifi- 
cant  sources of vibration-induced error  inherent in  these  devices are listed 

in Table B.3-1.  The program  also  contains  an  error  model  for a vibrating 
string  accelerometer, which is. described in Appendix C. 

The principal  program  inputs,  the  vibration  spectra, are defined 
at 96 points  over a range of 0.75 - 2000 Hz, for  each of the 36 spectral den- 

sity functions. It is necessary  to  perform  interpolations and create a few 
new data points within this  range  to  facilitate  the  integration of the e r ro r  
expressions. In generating  the e r ro r  values, it is convenient  to separate 
the  calculation of instrument-level  and  system-level  errors, as indicated 
on the flow diagram. The program is designed  to  calculate e r ro r  values 

for  any  number of gyros, in any orientation  relative  to  the body frame. 
Therefore, a number of transformations of spectral data, which will be 
described  presently, are necessary  in  setting up the error  expressions  in 

the  program.  Integrations of the  error  expressions are performed by 
means of a 3rd-order  (Simpson's  Rule)  algorithm. 

B-12 



READ IN DATA: 
TRANSFORMATON MATRICES 
TRANSFER FUNCTION PARAMETERS 
INSTRUMENT  PAMMETERS 
VIIATION SPECTRAL  DENSITIES 

.c- L 

CALCULATE  INSTRUMENT 
ERROR  COEFFICIENTS 

LI + 
SPECTRAL D A T A  

INTERPOLATE 

- 
I 

I CALCULATE A N D  PRINT O U T  
i f h   G Y R O  ERROR  VALUES 

I ANlSOlNERTlA 
2 SPIN -INPUT  CROSSCOUPLING 
3 SPIN  -OUTPUT  CROSSCOUPLING 
d REBALANCE  LOOP  ASYMMETRY 
5 STRUCTURAL  COMPLIANCE 

L 

N O  

YES 

CALCULATE A N D  PRINT  OUT 
i f h  ACCELEROMETER  ERROR  VALUES 

I OUTPUT-PENDULOUS  CROSSCOUPLING 
I VIBROPENDULOUS  ERROR 

3 SCALE  FACTOR NON -LINEARITY 
4 ANISOINERTIA 

6 STRUCTURAL  COMPLIANCE 
5 OUTPUT-PENDULOUS  PRODUCT OF INERTIA 

7 REULANCE  LOOP ASSYMMETRY 
B SIZE EFFECT 

N O  

&I CALCULATE  STANDARD  INTEGRALS: 

t t R- 1835 

CALCULATE A N D  PRINT O U T  

6. OUTPUT AXIS  SENSITIVITY 
i f h   G Y R O  SYSTEM  LEVEL ERROR VALUES 

7 SCALE  FACTOR 
8. MISALIGNMENT  ABOUT  OUTPUT  AXIS 

IO. MASS  UNBALANCE  ALONG  INPUT AXIS 
9 MISALIGNMENT  ABOUT SPIN AXIS 

1 1  EFFECTIVE  MASS  UNBALANCE ALONG 
WTFW AXIS-Tt€RMAL COWECTKN TOROUE 

12 MASS  WBALANCE  ALONG  SPIN  AXIS I 
1 

NO . CALCULATE  UNDETECTED A N D  SYSTEM PRINT C O N I N G  OUT 

I-r 
CALCULATE  AND  PRINT  OUT 

i t h  ACCELEROMETER  SYSTEM - 
LEVEL ERROR VALUES 

10 SCALE  FACTOR 
1 I MISALIGNMENT  ABOUT  PENWLOUS  AXIS 

9 OUTPUT  AXIS  SENSITIVITY 

i = N a C X  

1 YES 

I CALCULATE  AND PRINT OUT 
UNDETECTED  SYSTEM  SCULLING I 

t 
CALCULATE  AND PRINT OUT 

NET ERROR VALUES 

EFFECJIVE GYRO ERROR 
*NET  DETERMINISTIC  ERROR 

NET  RMS RANDOM ERROR 

EFFECJIVE ACCEl EROMEJER  ERROR 
0 NET DETERMINISTIC ERROR 
0 NET RMS RANDOM ERROR - 

NUMBERS CORRESCOND 10 COMPUTER PPlNI-OUT 

Figure B. 3-1 Computer  Program  Flow  Diagram 

B-13 



TABLE B.3-X 

MAJOR SOURCES OF VIBRATION-1NDUCED.ERROR ~ ". - 

Norden 1139 Single-Degree-of- 
Freedom  Gvro 

hs t rumen t -Leve l   E r ro r s  

0 Anisoinertia 

0 Spin  -Input Cross  coupling 

0 Spin-Output  Crosscoupling 

0 Rebalance Loop Asymmetry 

0 Structural  Compliance 

Contributions  to  System- 
Leve l   E r ro r s  

Sensitivity  to  Angular 
Acceleration  about  the 
Output  Axis  (Output 
Axis Sensitivity) 

Scale  Factor 

Misalignment 

Mass  Unbalance 

Undetected  System  Coning 

Kearfott 240 1 Pendulous 
Accelerometer 

h s t r u m e n t - L e v e l   E r r o r s  

0 Vibropendulous  Error 
(Input-Pendulous  Axis 
Crosscoupling) 

0 Output-Pendulous Axis 
Crosscoupling 

0 2nd  order  nonlinearity 

0 Anisoinertia 

0 Output-Pendulous Axis 
Product of Inertia 

0 Structural  Compliance 

0 Rebalance  Loop  Asymmetry 

0 Size  Effed 

Contributions  to  System- 
Leve l   E r ro r s  

0 Sensitivity  to  Angular 
Acceleration  about  the 
Output Axis (Output 
Axis Sensitivity) 

0 Scale   Factor  

0 Misalignment 

0 Undetected  System  Sculling 

B-14 



The contribution of each error  source  considered in the analysis 
is printed out as a vector of angular  velocity error ,  or acceleration  error 
where  appropriate.  These  error  vectors are also defined in later para- 
graphs.  The  coefficient  associated with each error  expression may be 
either a deterministic  quantity or a random  variable.  Examples of each 
type are presented  in the discussion of instrument  error  sources in 

Section B. 3-1, Individual  deterministic  angular  velocity error  vectors, 
defined  for  instrument-  and  system-level error  sources,  are summed  to 
calculate a net  deterministic  angular  velocity error  vector.  The  separate 
angular  velocity e r ro r s  having  random  (but  constant)  coefficients are root- 
sum-squared,  resulting  in a vector whose  components are the  rms  angular 
velocity e r ro r s  about  each  system  coordinate axis. Similar  calculations 
are carried out  for  deterministic  and  random  accelerometer  error  vec- 
tors.  The  four output vectors  can  be  regarded as the  deterministic  and 
rms random  values of effective gyro and accelerometer  vibration-induced 
error.  These can be applied as constant inputs to  a separate  error  anal- 
ysis, defined  according  to  Eqs. (B. 1-20) and (B. 1-21), to  determine the 
effect of major  vibration-induced e r ro r s  on navigator  performance. 

B. 3.1 Instrument-Level E r ro r s  

The sources of output axis disturbance  torques which are inherent 
in  single-degree -of -freedom gyros and  pendulous accelerometers are dis - 
cussed at length in Chapter 2. In the presence of vibrations, many of these 
disturbances lead to  constant  error  torques within the instruments, The 
major  sources of such errors  for  the  inertial  instruments  considered in this 

analysis are listed in Table B. 3-1, and the error  integrals, as they are 
defined in the program, are presented in Tables B.3-2 and B. 3-3. A list 
of the symbols  employed  in these and later expressions is given in 
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TABLE B.3-2 

MAJOR GYRO  ERROR EXPRESSIONS 

Anisoinertia 

spin-Input 
Crosscoupling 

Spin-Gutput 
Crosscoupling 

Rebalance Loop 
Asymmetry 
(rms error) 

structural 
Compliance 
(rms error) 

Table B.  3-4. The sensor transfer functions  appear  in several  error 

expressions and are calculated in the  program in terms of their real and 

imaginary  components 

W. = G ( v )  wi 
A 

1 
(B. 3-1) 

a. = A(v) ai 
A 

1 
(B. 3-2) 
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TABLZ B. 3-3 

MAJOR ~~ ACCELEROMETER ”_ ~ ERROR  EXPRESSIONS 

Vibropendulous 
Error 

Output-Pendulous 
E rror 

Scale Fac to r  
Nonlinearity 
(rms e r r o r )  

Anisoinertia 

Output-Pendulous 
Product  of Inertia 

Structural  
Compliance 
( r m s   e r r o r )  

Rebalance  Loop 
Asymmet ry  
( r m s   e r r o r )  

Size Effect for 
Accelerometer  X 1 
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TABLE B. 3-4 

LIST OF SYMBOL8 
(For Tables B. 3-2 and Bo 3-3) 

angular  velocity  spectral 
densities 
linear  acceleration  spectral 
densities 
spectral  densities of products 
of angular velocity  and linear 
acceleration 
Fourier  transform 
radian  frequency 
subscript; real component 
subscript;  imaginary 
component 
subscripts;  gyro  coordinate 
frame, input axis, output 
axis, spin axis 
subscripts;  accelerometer 
coordinate  frame, input 
axis, output axis, minus 
pendulous axis 
angular  displacement about 
sensor output axis; the  gyro 
float  angle o r  the pendulous 
accelerometer  gimbal  angle 
gyro transfer function relating 
input motion to  indicated output 
gyro  transfer function relating 
input motion to a. 
accelerometer transfer function 
relating input motion to 
indicated output 
accelerometer  transfer func- 
tion relating input motion to a0 

CbJI transfer function repre- 
senting navigation system 
computer  operation 

Q(v 1 gyro wheel speed  control 
loop transfer function 

Transfer Function Parameters 
Applicable to Both Instruments 

sensor  transfer function 
parameters 
compensation  network 
parameters 
bandpass  filter  parameters 
sensor pickoff gain 

demodulator ac  gain 

compensation  network 
dc gain 

signal  generator gain 
torque  generator gain 
instrument  scale  factor 

Gyro Parameters 

H gyro angular momentum 

Iii moment of inertia of the 
gimbal-rotor combination 
about the  gyro input axis 

gimbal-rotor combination 
about  the  gyro output axis 

bo moment of inertia of the 

B-18 



TABLE B. 3-4 (Continued) 

LIST OF SYMBOLS 
(For Tables B. 3-2 and B. 3-3) 

Issg moment of inertia of the  gimbal 
about the gyro  spin axis 

hs r moment of inertia of the 
about the  gyro  spin axis 

A m  2 
“ K .  where  m is the  rotor mass and 

lS Kis is the  structural com- 
pliance  coefficient  relating 
rotor  center of mass displace- 
ment along  the  gyro input axis 
to  acceleration along the gyro 
spin  axis; similar expressions 
apply for the other  coefficients 

where  m is the rotor  mass and 
is the  displacement of the 

float  center of mass along the 
input axis;  similar  expressions 
apply for  the  other  coefficients 
gyro output scale  factor  error 
misalignment of the  gyro 
coordinate  frame about  the 
output and  spin  axes 
respectively. 
torque  generator  scale  factor 
asymmetry 

Accelerometer  Parameters 

P pendulosity of pendulum- 

Iii moment of inertia of the 

gimbal  combination 

pendulum-gimbal  com- 
bination about the 
accelerometer input axis 

pendulum-gfmbal  com- 
bination  about the 
accelerometer output axis 

b0 moment of inertia of the 

moment of inertia of the 
pendulum-gimbal  com- 
bination about the 
accelerometer pendulous 
axis 

product of inertia of the 
pendulum-gimbal com- 
bination  about the 
accelerometer output 
and pendulous axes 

where m is the mass 
gimbal-pendulum. structure 
and Kip is the structural 
compliance  coefficient 
relating the gimballpendulum 
center of mass displacement 
along the  accelerometer 
input axis t o  acceleration 
along the  accelerometer 
pendulous axis; similar 
expressions apply for  the 
other  coefficients 

accelerometer output scale 
factor  error 

accelerometer output scale 
factor  non-linearity 

misalignment of the 
accelerometer  coordinate 
frame about  the  pendulous 
axis 
torque  generator  scale 
factor  asymmetry 
vector of displacement 
components of accelerom- 
eter axis system  from 
the body coordinate 
frame 
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where 

w. = gyro  indication of angular  velocity 
A 

1 wi about its sensitive axis 

ai .. = accelerometer  indication of acceleration 
ai along its sensitive axis 

and G(v) and A(v) are the  closed loop gyro and  accelerometer  transfer 
functions  respectively,  defined as 

The  parameters of these  closed loop transfer  functions are input  variables 
to the computer  program.  A  linearized e r ro r  model,  applicable  to both 
sensors, which is employed in defining these  parameters, is shown in 
Fig. B. 3-2. In the program, it is presently  assumed  that  the  transfer 

characteristics  for all gyros  and  for all accelerometers are identical. 

G,(4 QUANTIZER """-"- "~""""""_ 
-I r------l 

I I : !@ I I 
I I1 I L "_"""~""""""" A I" ""_-I A 

Figure 4 3-2 Linearized Model for  Gyros  and  Accelerometers 
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Gyro Error  Sources - Anisoinertia error  torques are a common 
source of vibration-induced error in a single-degree-of-freedom  gyro. 
If the moments of inertia about the input and spin axes of the device are 
not  matched,  an error proportional  to the product of the angular motion 
about these axes is created.  The  spin axis angular motion of the gyro 
case  and  gimbal is transferred  to the rotor  through the wheel speed con- 
t rol  loop, which is modeled in the program as a 2nd-order  transfer 
function. 

2 

where 

wr = natural  frequency of wheel speed  control loop 

p = damping ratio 

s = Laplace  variable 

The  spin axis inertia of the rotor can be considered coupled to the 

float only at vibration  frequencies below the bandwidth of the control 
loop. Consequently, it is impossible  to  eliminate  anisoinertia  effects 
both high and low angular  vibration  frequencies by choosing  inertia 
properties. 

The float  angle  generated by angular motion  about the gyro i: 

at 

nPu 
axis can  couple with angular motion  about the nominal  rotor  spin axis to 
produce a gyro  drift rate having a non-zero  average  value.  This  effect is 
lmown as spin-input  crosscoupling.  The  transfer function which relates 
the output angle  to  the input motion is defined as 
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G'(v) = 7 G(v)  
%fG2 v ,  

(B. 3-3) 

The  symbols  appearing  in  the  denominator of Eq. (B. 3-3) are defined in 

Fig, B. 3-2. 

Spin-output crosscoupling is a similar  source of vibration- 

induced er ror  in which the float  angle is generated by angular  acceleration 

about  the  gyro output axis. 

Asymmetry in the scale  factor  relating gyro output to the rebal- 
ance  torque  applied can result  in a constant  drift  rate i f  the  vibration fre- 
quency is within the loop bandwidth. In this analysis,  linear  rebalance 
electronics  are  assumed,  for which the  torquer gain for applying  positive 
rebalance  moments is (1 + E )  times  that  for  negative  moments.  It can be 
shown that the error  expression given in Table  B.3-2 also  applies  for  pulse 

rebalanced gyros, with an appropriate  definition of E. 

Linear  vibrations can also  cause  disturbance  torques about  the 
gyro output axis due to compliance in the  gimbal and rotor  structure: 
Although the  structural compliance  coefficients  can be frequency-dependent, 
constant  coefficients  were  assumed in deriving  the error  expression given 
in Table B.3-2. 

Accelerometer  Error  Sources - Many of the  vibration-induced 
e r ro r s  which a re  significant  for a pendulous accelerometer  are  similar  to 

those defined for the single-degree-of-freedom gyro. The mechanisms 
for  describing  linear  compliance  errors, and also  rebalance loop er rors ,  
are identical for these two devices,  Anisoinertia  affects  propagate in the 
same way in both instruments,  except there is no  rotor in the pendulous 

accelerometer;  the  decoupling  effects  present in the gyro, a function 
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of the wheel speed  control loop, are not present in the  accelerometer. 
Vibropendulous e r r o r  in the accelerometer, a function of linear  vibrations, 
is analogous to  spin-input  crosscoupling in the gyro. A transfer func- 
tion similar  to that defined in Eq. (B. 3-3) is calculated in the pro- 
gram to  generate the crosscoupling  error  values.  Sensitivity  to angu:€.ar 
acceleration about the output axis, an  important  source of gyro er ror ,  
also  results in crosscoupling e r ro r s  in the  pendulous  accelerometer.  This 
error  source involves  the coupling of angular and linear vibrations  acting 
on the instrument  and is identified in the program as output-pendulous axis 
crosscoupling.  Constant e r ro r s  involving the products of output axis and 
pendulous axis moments of inertia, which may be significant in a pendu- 

lous  accelerometer, a r e  included in the  program as well.  Scale  factor 
nonlinearity in the  accelerometer  results in constant e r rors  which a re  
proportional  to the square of acceleration  along  the  sensitive axis of 
the  device. The data available  for  the  Kearfott 2401 (see Table 4.2-1)  
indicates that this effect may be important and it is also included in the 
program. An additional  consideration is the  physical  separation of the 
accelerometer  from  the  center of the strapdown  navigator, which can 
result in  erroneous  indications of acceleration in a rotational  vibration 
environment.  The latter is referred  to as "size effect."  Size effect e r ro r  
includes  components that rectify at the  system  level so that the  transfer 
characteristics of the system  computer,  represented by 

appear  in the error  expressions. An approximate  computer model is pre- 
sented  in a later section. 

The detailed error  expressions are summarized in Table B. 3-3. 

In the program, an input,  output,  pendulous axis coordinate  system (i, 0, p) 
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is defined  for  each  accelerometer and this  frame is employed in computing 
the e r r o r  values. 

Transformation of E r r o r  Values - Frequency-domain  integration 
of the  error  expressions  for each instrument  yields  the  average  values of 
the  vibration-induced er rors ,  in terms of false indications of motion 

parallel  to  each  instrument  sensitive axis. In order  to express these e r ro r s  
in a form  compatible with Eqs. (B. 1-20) and (B. 1-21), it is necessary  to 
transform  them into the body frame, a coordinate  frame  fixed in the  navi- 
gator.  The  direction  cosines  describing the orientation of the sensitive 
axis of each  instrument  relative  to this body frame are provided as input 
data to the computer  program.  The e r ro r s  are then  transformed  into  the 
body frame as they are calculated.  For  example, the j error  source  for 
the ith gyro is expressed in body uoordinates as 

th 

(B. 3-4) 

where 

d = vector of direction  cosines  relating the 
-gi ith  gyro  sensitive axis to body axes 

Accelerometer  errors are transformed into the body frame in a similar 

fashion. 

Some of the e r ro r  coefficients  defined in the program  and  listed 

in  Tables B.3-2 and B.3-3 may be random  variables.  For  example,  com- 
pliance  coefficients are often given as the  rms  value of a zero-mean ran- 
dom variable, defined for an ensemble of instruments.  Other  parameters, 
such as moments of inertia,  can  be  more  easily  measured and are gener- 
ally  treated as deterministic  quantities  for a particular  instrument. In 
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establishing the net  effect of vibration-induced  instrument errors ,  the 

deterministic errors can be added directly, but it is necessary to treat the 
the random errors  statistically.  The  relation employed in calculating 
deterministic  gyro  error is given in Eq. (B. 3-5): 

(Bo 3-5) 

where 

n = number of gyros 
g 

n = number of deterministic 
dg gyro error  sources 

The  components of the vector 6wb appear as elements of bhl in Eq.(B. 1-21). 
A similar equation is employed to  calculate  net  deterministic  accelerom- 
eter error .  

b 

It is assumed that the random error  sources are uncorrelated 
with one another and a root-sum-square of these  contributions is per- 
formed  to  calculate a net  rms value. For  example, the r m s  gyro e r ro r  
along the x body axis can be expressed as 

(B. 3-6) 

where 

n = number of random  gyro r g error   sources  
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Similar  expressions  define the rms gyro e r ro r s  along  the x and y body axes 
ind  the three components of rms  accelerometer  error. 

B. 3.2 System-Level Errors  

The potential  sources of constant  and  growing e r ro r s  at the sys- 
tem  level fall into  two classes:  those  created by vibration-induced e r ro r s  
in the inertial  instruments  and  those due to  vibrations  occurring at fre- 
quencies beyond the instrument bandwidths. (See Chapter 3 for  further  dis- 
cussion. ) Expressions  defining the average  values of system-level  errors 
can be derived by an expansion of the product terms within the  brackets  in 
Eqs. (B. 1-2Q) and (B. 1-21). This  expansion  yields  terms of the  form 

z 
â where 6q is the  angular e r ro r  about the y body axis  and Ci is the  in- 

Y Z 
dicated  acceleration  along the z body axis. Average e r ro r  values are 
determined as the  sum of the  average  values of a number of such  product 

terms. It is therefore  more convenient to  use an alternate (Ref. 20) form 
of Eq, (B. 2-2) in defining the error  integrals. 

T 03 

T- -T 

where 

0 

m 

Fourier  transforms of 6 p  
A 

y' "z 

the real component of the 
cross-spectral  density of 
6cp andgz 

Y 
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In order  to  derive the e r r o r  expressicas, it is first necessary 

to define Fourier  transforms  for all the terms  resulting  from an  expansion 
of Eqs. (B. l -20)  and (B.1-21). A,representative  sample of the required 
set of transforms is contained  in  Table B. 3-5: Note that all of these expres- 
sions  involve the transfer  functions of an inertial  instrument and also the 
navigation  system  computer.  System-level errors  must be treated in this 
fashion,  since the magnitude  and phase of the sensed  vibrations are altered 
as they are processed  through  the  instrument and the computer  to the point 
where rectification  constructively  occurs. Only the transfer characteristics 

TAB- B.3-5  

DEFINITIONS OF FOURIER TRANSFORMS 

Indicated  Acceleration V -  (u )  e A b )  C b )  Va a 
Z z 

Indicated  Angular  Velocity v C. ( u )  2 G ( u )  C ( u )  V (u) 
wZ  wZ 

Jndicated  Rotation 

Undetected  Acceleration V ( u )  e [l - A b )  C ( v )  1 V (u)  
6aZ aZ 

Undetected  Rotation 

Gyro  Output b s  Sensitivity Vs (u) = ju H G ( u )  C ( u ) V w  ( u )  
A Io0 

%x Y 

Accelerometer  Scale Factor e (SFa) A(u)  C ( u )  V 
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of the  computer are considered in this analysis.  Other  mechanization 

problems  such as word  length,  algorithm er rors ,  etc., which are also 
present in a strapdown  system, are ignored. An approximate  sample- 
and-hold model is used  to  represent  the  computer: 

1 - e  - j v ~  
C(v)  = 

j VT 
(B. 3-8) 

where T is the computer  algorithm  cycle  time,  assumed  to be the  same  for 
both attitude  and  navigation  calculations. 

Given the  necessary  Fourier  transforms, Eq. (Bo 3-7) can be 
applied  to  determine  the error  integrals in terms of vibration  environ- 
ment cross-spectral  densities. A number of simplifications can be  made 

in defining  these  integrals.  For  example, it can  be shown that the coning 
error   terms  in  Eq. (B. 1-21) reduce  to a skew-symmetric  matrix whose 

elements are components of the  vector 

- I  
(B. 3-9) 

where  the  bar  denotes  the  average  value of the error  vector. In deter- 

miniirg pseudo-coning e r ro r  values the second-order  terms  in 6 w i  involv- 

ing  products of e r r o r  coefficients, are neglected.  These terms are also 

neglected  in  calculating  pseudo-sculling errors ,  and the contributions of 
gyro  and  accelerometer  errors  to  pseudo-sculling  can be considered 
separately by defining the vectors 
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- - 
A A 

cPy6az - v p y  
- A A contribution of 
- 6a ' = accelerometer (B. 3-11) - Qx6aZ 

(errors ) 
$ 6a - $ 6a 

X Y  Y X  - - 

Table Bo 3-6 contains a sample of the error  expressions as they appear  in 
the computer  program. 

The calculation of system-level  error  values, is made more 
efficient by the  use of matrices of standard  integrals, which are defined in 
Table B. 3-7, These  matrices are defined in the data coordinate  frame  and 
the system-level  errors, as expressed  in  Table B. 3-6, are  referenced  to 
body coordinates.  Therefore, a transformation of the spectral data is re-  
quired  in the program to properly set up the error  expressions in terms 
of the standard  integrals. For example,  the  vector of pseudo-coning e r ro r  
values  resulting  from  scale  factor  error in the ith gyro is given by 

(B. 3-12) 

S '  - s '  23 32 
( 6 ~ ' ) ~  = 2SF - g 
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TABLE:  B. 3-6 

TYPICAL SYSTE M-LEVE L ERROR EXPRE SSIONS 

Undetected 
System Coning 

Undetected 
System  Sculling 

Gyro Output Axis 
Sensitivity 

Accelerometer 
Scale  Factor 

m 

1 %  
0 

0 

m r 

where the scalars s ' are  elements of the  matrix 

S '  = MSb d l  
-gi -gi 

1 

(B. 3-13) 

The  vector dgi is defined  in  Eq. (B. 3-4) and M, also a program  input, 

represents  the  transformation  from the data to the body coordinate  frame. 
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TABLE B . 3  ”7 

DEFINITIONS OF STANDARD INTEGRALS 

1 
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The vector bgil is the first row of the  Bgi matrix defined in Eq. ( ~ . 2 - 6 ) ,  

which can be expressed as 

B =  
gi 

(B. 3-1-44) 

Similar transformations of  the  standard integrals can be defined for all of 

the system-level  error  sources. 
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APPENDIX C 

MOTION-INDUCED  ERRORS  IN 
VIBRATING  STRING  ACCELEROMETERS 

This appendix describes motion-induced e r ro r s  in vibrating 
string accelerometers, in terms compatible with the strapdown  system 
e r r o r  computer  program  described in Appendix B. 

An illustration of the vibrating string accelerometer (VSA) is 
provided in Fig. C-I. The vibrating strings, string 1 and string 2 in the 
figure, are identical  and are excited at their natural  frequency of vibration. 
In the presence of accelerations  along the sensitive axis the two masses 
deflect,  increasing the tension  (and  hence the vibrational  frequency) in one 
string, and decreasing it in the other. The frequency  difference is pro- 
portional  to the acceleration  along the sensitive axis according  to 

where the x-axis is defined as the sensitive  axis of the device  and the scale 
factor K is given by 

m = mass of proof mass 

h = mass/len@h of string T = nominal  tension  in  vibrating  string 

k = string  stiffness  coefficient f = specific  force  along the sensitive 

aO 
= nominal length of vibrating string 

0 

X axis 
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STRING 2 

MASS 2 

SOFT  SPRING 

CROSS- SUPPORT 

MASS 1 

STRING 1 

MAGNET 

Figure C -1 Vibrating  String  Accelerometer 
(AMBAC Industries D4e Model) 

The  use of two identical  vibrating  strings  eliminates  the  even  powers of fx  
in the frequency  difference  expression, so that there is no rectification of 

linear  vibrations. The two proof masses,  separated by a soft spring, are 
necessary  to avoid  coupling of the string vibrations. The center  spring  also 
eliminates  frequency  differences  created by expansion of the case  structure. 
It transmits  tension,  however, and does  not  introduce any significant non- 
linearity  into the VSA output.  The symmetric  supporting wires are very 
stiff in compression  to  reduce cross-axis sensitivity  but they allow the 
proof masses  to  deflect  along the sensitive axis in response  to  applied 

ac  ce ler ation. 

The following sources of  VSA e r ro r  are considered  to be the 
most  significant  contributors  to  rectified  a,cceleration e r r o r  in the presence 
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of vibrations. Where appropriate, a physical  description of the e r ro r  is 
included. 

Proof Mass Differences - The  elimination of even-ordered non- 
linear  terms in the frequency  difference  expression,  Eq. (C-1), is achieved 
only if both halves of the VSA a re  identical. A difference in the two proof 
masses,  expressed as 

m = m2(l + E) 1 

will cause  the  frequency  difference  (accelerometer  output)  to depend on f:; 
a non-zero  average e r ro r  is generated  in a linear vibration  environment. 
This can be  expressed in terms of the sensitive axis acceleration  power 
spectral  density, \k=; 

average  acceleration  error - 
03 

due to proof mass  differences xx ( C - 3 )  

where K is given by 1 

and K is the  instrument  scale  factor defined in Eq.  (C-2). 

Differences  in  Spring  Stiffness - A similar  non-linear  error 
term is introduced by differences inthe stiffness  coefficients of strings 1 
and 2. If this difference is defined by 

kl = k2(1 + e )  
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the  average  value of the  vibration-induced e r r o r  is given  by 

average  acceleration  error due 
to differences  in  string  stiffness [( m2 >/k] qxx(v)dv 

4 q : m  0 
(C-4) 

Mass Unbalance - If the center-of-mass of the proof mass is 
not  coincident with its center of suspension,  defined by the intersection of 

the supporting  wire  and  vibrating  string axes, an effective  mass  unbalance 
is created. The  component of this  mass unbalance  along  the  sensitive  axis, 

qX, 
causes a torque, L, in the presence of cross-axis  accelerations. 

L = m n a  
Z X Y  

L 
Y 

-mq a x z  

Since the  cross-axis  supports have a relatively low rotational  stiffness  to 

allow for deflection of the proof mass, this disturbing  torque  must be bal- 
anced by increased  tension  in the vibrating  string. The string  tension will 

increase  regardless of the sign of the  disturbing  torque, so  that, consider- 
ing only one  proof mass, the apparent  specific  force  along the VSA sensi- 

tive axis, given by Eq. (C-5), has a non-zero mean. 

A similar  expression exists for  acceleration  along the VSA z-axis. In 
general,  cross-axis  vibrations will induce a periodic  increase  in  the  tension 
of both vibrating  strings due to proof mass unbalance, and hence  an increase 
in their  frequencies of vibration. Since the difference  in  string  frequencies 
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is interpreted as a change in acceleration, these effects  tend  to  cancel out. 
The error that is rectified is a function of the difference  in the absolute 
values of the mass unbalance  coefficients of the two  proof masses. If we 
describe that difference as 

the average  acceleration  error is given by 

average  acceleration  error rv ck m $ Qyy(V)dv 
03 

due to  mass unbalance 
- "  (C- 6) 

b T: 0 

Supporting Wire Compression - The  cross-supports of the VSA 

proof masses are very stiff in compression  to  reduce the cross-axis  sen- 
sitivity of the  device. Any deflection of one of the proof masses  induces an 
apparent  sensitive axis acceleration that is a function of the square of the 
cross-axis  acceleration. 

6f - 
- - z y  

km f2  
X 

O L  

(C - 7) 

where k is the stiffness  coefficient of the supporting wires. Since both 
proof masses are deflected, a net  acceleration  error is present only if  the 
stifihess coefficients of the two sets of supporting wires are different; 

J. 

k = ( l + c ) k  
5 l 2  

c - 5  



In that  case, the  average  vibration-induced e r ro r  is given by 

average  acceleration  error due - € k m  
to  supporting wire compression - -2 

cn 

O l2 
0 

The e r ro r  due to  z-axis  linear  vibrations is similarly defined. 

Rotational  Compliance - Because  the  design  must  permit the 

proof  masses  to  deflect in the  presence of sensitive-axis  accelerations, 

the supporting  wires  provide  little  resistance  to  rotation of the proof 
mass.  Therefore, the disturbing  torque  resulting  from the angular ro- 
tation of the VSA case  must be balanced by an increase in vibrating  string 
tension. The effect is similar  to that described  for  mass unbalance  coef- 
ficients;  ideally, the frequency  changes  cancel. If we allow for a differ- 

ence in the cross-axis  moments of inertia of the two proof masses 

I = (1 + €) I 
W l  3y2 

the  average  angular-vibration-induced e r r o r  is given by 

average  acceleration  error Ly ck 2 
due to  rotational  compliance - 7 'YY 2 

03 

bmTo 0 U 

The  effect of z-axis  angular  vibrations is described by an expression  simi- 

lar to  Eq. (C-9). 

Coriolis  Effect - The physical  separation of the two proof masses 
introduces a relative  acceleration between them  in the presence of angular 

C-6 



motion. If we assume that the  separation  distance, c ,  is fixed,  the rela- 
t ive  error is given by 

The constant e r ro r  contribution  induced by random  angular  vibrations is 
given by 

average  acceleration  elrror 
due to  Coriolis  effect = -c 5: dv [@ zz ( v )  + YY ( v )  

All of the  previously  described VSA e r ro r s  depend upon manufac- 
turing  imperfections -- unmatched proof masses, unequal stiffnesses, 
etc, -- in the VSA. The  Coriolis  effect, on the  other  hand,  results  from a 
physical  characteristic of the instrument which is unavoidable.  Hence, it 
is potentially a major  source 

Pseudo-Skulling - 

of vibration-induced  accelerometer  error. 

Vibration-induced  acceleration e r ro r s  can 
couple with the  correctly  sensed  angular  rotations of the strapdown  package 
to  produce a pseudo-skulling  effect. A major  source of constant  pseudo- 
skulling e r ro r s  is VSA scale  factor  error  introduced by proof mass differ- 

ences.  The  oscillatory  acceleration  errors  produced  combine  in  the  sys- 
tem calculation with angular oscillations which have the  same  frequency 
and  phase  to give a constant  acceleration e r r o r  in the nominal  direction of 
one of the  system  axes. The average  error  generated by the x-accelerom- 
eter, y-gyro  combination is given by 

m 

average  pseudo-skulling e r ro r  - E 
due to proof mass  differences - 2  

c-7 



where E is the percent  difference in the proof mass.  This  appears as an 
erroneous  acceleration  along the z system axis. The  expression  can  be 
expanded  in terms of the co-spectral and quadrature  components.  There 
are many other  sources of pseudo-skulling error ,  all of which can be de- 
veloped in a similar  manner  using the accelerometer  error  equations  pre- 
sented  above. 
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APPENDIX D 

ERROR  DYNAMICS  FOR SINGLE-AXIS-PLATFORM GYROS 

In a single-axis-platform (SAP) configuration,  the  strapdown 
gyro is gimballed  about its input axis to  allow free rotation between the 
vehicle and the gyro. Ideally,  the gyro itself does not rotate about its 
input axis when viewed from an inertial  reference  frame and the rate-of- 
change of the  gimbal  angle  can  be  interpreted in terms of the  angular  rate 
of the vehicle. SAP outputs  for  three  orthogonal body-fixed axes  provide 
the  angular motion information needed for  attitude  matrix  calculations in 
the strapdown  system. Any rotation of the gyro about its input axis causes 
a precession of the gyro float about its output axis  (see  Fig. D-1). The 
sensed  precession  angle is used to  drive a torque  motor which rotates the 

gyro case about its input axis  in  the  reverse  direction,  to  null  the  pre- 
cession  angle.  The SAP output is in e r ror  by any residual  rotation of the 
gyro about its input axis, whether  caused by a combination of vehicle  mo- 
tion and gimbal  friction or by unwanted torques on the output gimbal. In 
a vibration  environment,  the  most  serious  rebalancing  errors  are  those 
caused by disturbance  torques about the gyro output axis which can result 
in a constant gyro drift  rate. In this  Appendix, the SAP transfer  charac- 
teristics which describe  gyro  response  to a general motion environment are 
derived  srder CQ determine  the  nature of vibration-induced gyro drift rates. 

Following Fig. D-1, 

input axis can  be  expressed as 

B (Wi - 

the  torque  balance  equation about the  gyro 

D-1 



Figure D-1 Single-Axis-Platform Gyro 

where 

T = torque  applied  to the gimbal shaft 
by the torque  generator 

( &I) = input axis component of the rate of 
i change of gyro angular momentum 

with respect  to  inertial  space 

w. = input axis component of the inertial 
1 angular rate of the vehicle 

E = inertial  rotation  angle of the gyro 
about its input axis 

R-4363 

Output Axis 

B = coefficient of viscous  damping  between 
the shaft and the vehicle. 
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The  Laplace  transform  transfer function for  the  applied  torque  T is given 
by (Ref. 17) 

g 

- 
Tg rms+l 

- K'R [ L(s) cro(s) - 60K (wi(s) - s ci (s))] (D-2) 

where 

K = constant f lux motor  coefficient 

R = armature  resistance 

crO 
= gyro float  angle 

L(s) = float  angle  to input armature voltage 
transfer function 

T = torque  motor  time  constant m 

The  major  torques  acting  about  the gyro input axis  to  produce a 
time rate of change of angular momentum are  represented in the equation 

(e IZ = I.. i'. + H w + it 
llG i 1 ( 0  0) 

where 

I.. = moment of inertia of the gyro and SAP 
llG gimbal  shaft  about the gyro input axis 

wO 
= output axis component of the  inertial 

angular rate of the vehicle 

Substituting  Eqs. (D-2) and (D-3) into (D-1) and using  Laplace  transform 
notation results in the expression 
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wi(s) - S P ~ ( S )  Ui(S) - s € i(s) 1 
2 

= I.. s ci(s) +H wo(s)  + srro(s) 
llG 1 

where K1 = K/R and K2 = 60K2/R. 

The  gyro  float  angle cyo reflects both gyro  rotation  about its 
input axis and the disturbance  torques which act about the gyro output 

axis., A general expression  for this behavior is given by 

where 

Md(s) = output axis component of the disturbance 
torques  acting on the gyro  float 

I = moment of inertia of the gimbal-rotor 
combination  about the gyro output axis 00 

C = viscous  damping  coefficient of the 
gyro  float 

I ~ ~ / c  = T ~ ,  gyro  float  time  constant A 

Substituting  Eq. (D-5) into (D-4) and combining terms  results in the 
expression 
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It is convenient to express the effects of vehicle  vibrations  in 
terms of the gyro input axis drift, sci(s). Equation (D-6) can be rearranged 
as 

where G1(s),  G2(s) and G ( s )  represent the appropriate  transfer  charac- 
teristics  derived  from Eq. (D-6). This general  expression is used to 
define  the  system-level  vibration-induced e r ro r s  in the SAP system in 
the manner  outlined in Ref. 3. 

3 
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APPENDIX E 

DESCRIBING  FUNCTION  CALCULATIONS 

Describing Function - The  describing function for a nonlinearity 
may be defined as follows  (Ref. 10): 

phasor  representation of output  component at frequency w 
phasor  representation of input  component at frequency w NA(A) = 

where A1(A) and q ( A )  represent  the  amplitude and phase of the first- 
harmonic in the output of the nonlinearity when its input is 

x = A sin wt 

= A s i n $  

Denoting the output of the nonlinearity by y(s),  Fourier series manipula- 
tions  result in the following form  for N (A) A 

If the  nonlinearity is odd and memoryless, this can be simplified  to 

E -1 



Example 1 - Figure E-l(a)  illustrates a sinusoidal input and  the 
corresponding output for a binary  (two-level)  nonlinearity.  From Eq. (E -4), 
the  describing function is computed as 

Example 2 - Figure  E-l(b)  illustrates a sinusoidal input and the 
corresponding output for a ternary  (three-level)  nonlinearity.  From 
Eq. (E-4), the  describing function is computed as 

- 4D - - cos @ 7rA 1 

Dual Input Describing  Function - For  our  present  purposes we 
define the dc gain of a nonlinearity  to be the ratio of dc output to dc input, 

over one limit cycle  period.  Thus,  for x = B + A sin $, we get 

Example 3 - The  model  input  and  corresponding output  wave- 

forms  for a binary  nonlinearity are shown in  Fig.  E-2a.  Equation  (E-7) 

yields 

E -2 
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(a) Binary  (Two-level)  Nonlinearity 

Y 

(b) Ternary  (Three-level)  Nonlinearity, $ = sin-l(S/A) 1 

Figure  E-1  Nonlinearity Input and Output Waveforms 

" - 2D sin-' (:) 
TB 

Example 4 - A  two-segment  piecewise-linear  asymmetric  non- 

linearity is illustrated in Fig. E-2b. Equation (E-?)  yields,  for  the  equiva- 
lent dc gain, 
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NB(A, B, = p 2 m l ( B  +Asin 9) d@ + '7 92m2(B +As in  9) do 
m +#2 

2n 1 
+ $ ml(B+Asin$)  d@ 

2v - d, J 
m + m  - - 1 2, ml-m2 

2 n 

- - +rn 2 +  m l - m 2  [ -1 B A/+] 
2 sin - +-  

n A B  

p """" 

-Dt 
Binary  Nonlinearity 

8-3936 

-92 
""" 

(b) Two-Segment Asymmetric  Nonlinearity 

Figure E -2 Input and Output Waveforms  for Two Nonlinearities 
with Bias  Plus  Sinusoid Input 
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